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Abstract— Manufacturing flaws in memory devices give rise 

to faulty cells rendering the chips unusable and consequently 

reducing the wafer yield. To repair faulty memory cells, 

redundancies are included in the form of spare rows and 

columns in the memory. Redundancy Analysis is the process of 

mapping these spare rows and columns to repair faulty lines in 

the chip. However, Redundancy Analysis is an NP-complete 

problem, making it difficult to find a trade-off between repair 

rate and runtime, especially for large chip sizes. In this paper, 

we introduce AlphaRA, a first-of-its-kind memory repair 

algorithm based on the Reinforcement Learning algorithm 

AlphaZero. We explicate AlphaRA as a single agent problem 

that learns the strategies of Redundancy Analysis through self-

play. Starting tabula rasa, AlphaRA achieves an average 

normalized repair rate of 99.8% on 16×16 chips with only 32 

MCTS simulations. It outperforms the next best heuristic 

algorithm by 5.42% while utilizing 0.29% lesser spares, making 

it a suitable Redundancy Analysis algorithm for mass 

production of memory devices. 

Keywords—reinforcement learning, redundancy analysis, 

AlphaZero, memory repair. 

I. INTRODUCTION 

The semiconductor manufacturing industry has seen a 
rapid surge due to advancements in memory technology. In 
order to meet the increasing demand for memory devices, the 
leading producers are manufacturing them in huge amounts on 
a single wafer. Manufacturers have also increased memory 
densities and decreased the node sizes in these devices due to 
which the probability of faults in the memory has increased. 
During the fabrication process, there are several external 
factors such as temperature, equipment inaccuracies, 
undesired chemical and airborne particles that can increase the 
faults in the chip, leading to a reduction in the overall wafer 
yield.  

With increasing fault probabilities in the memory devices, 
semiconductor manufacturers have incorporated redundancies 
into the memories in the form of spare rows and columns 
which can be used to repair the chips. The process of 
allocating these spare rows and columns to faulty lines in the 
chip is called Redundancy Analysis (RA) [1]. A chip is 
considered as repaired only if all the faulty lines are mapped 
to the spares. As illustrated in Fig. 1 the chip has 5 faulty cells, 
1 spare row, and 2 spare columns. The chip is repaired by 
mapping the spare row to row 3 and the spare columns to 
columns 2 and 3. These mappings are used during memory 
repair to substitute the entire faulty rows and columns. During 
a read or write request to a faulty line, the mapped spare is 
accessed instead of accessing the faulty line. The decision of 
allocation of spares to faulty rows and columns has a high 
impact on the overall yield. Since RA is an NP-complete 
problem [1], an exponential-time algorithm is required to 
achieve the maximum possible yield. 
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Fig. 1: RA repair process for a 4x4 memory chip with 5 faulty cells having 1 
spare row and 2 spare columns 

Previous research has focused on heuristic and exhaustive 
RA algorithms. Heuristic RA algorithms such as Broadside 
[2], Repair-Most [1], LECA [3] and OSP [4] have lower 
runtime but also have low repair rates. On the other hand, 
exhaustive RA algorithms, such as FLCA [3], Branch-and-
Bound, and PAGEB [1] achieve optimal repair rates but with 
exponential time complexities. Section II further discusses the 
existing algorithms along with their merits and limitations. 

Heuristic algorithms currently used for memory repair are 
designed with certain insights in mind such as patterns of 
faulty rows and columns. The motivation for exploring a 
Reinforcement Learning (RL) approach for RA is driven by 
the fact that RL allows the agent to self-discover 
unconventional strategies, without requiring insights into fault 
patterns. The agent learns to repair the chip without any design 
insights or handcrafted rules. 

In this paper, we introduce an AlphaZero [5] based RA 
algorithm, AlphaRA. It learns from its environment by 
combining Monte Carlo Tree Search (MCTS) and Deep 
Neural Networks (DNN) iteratively for policy evaluation and 
improvement. Through self-play over many episodes, the 
agent learns a policy to achieve a high repair rate. 

The contributions of our paper are as follows: 

 We explicate AlphaZero which was originally 
developed for two-player zero-sum games, as a 
single-player RA algorithm 

 AlphaRA outperforms heuristic algorithms in terms 
of yield and spare utilization while maintaining a 
comparable yield with the exhaustive algorithms 

 We also demonstrate the scalability of AlphaRA on  
different chip sizes 

Thus, we show that AlphaRA is an effective memory 
repair algorithm for large scale production of memory devices.  

The rest of the paper has been organized as follows. 
Section II gives a background of the existing memory repair 
algorithms and the key concepts related to AlphaZero and 
Memory Fault Simulators. Section III describes the proposed 
solution AlphaRA. Experimental setup in Section IV is 
followed by the results and analysis in Section V. Finally, 
Section VI explains the future scope of our work followed by 
the conclusion.  



II. BACKGROUND  

A. Redundancy Analysis Algorithms 

Effective RA algorithms should provide a good mapping 
of faulty rows and columns to the spares in the memory device 
within a reasonable time. Such an algorithm should have a 
high repair rate, which can be measured by the number of 
chips repaired by the algorithm. The repair rate and 
normalized repair rate [1] are defined as: 

 𝑅𝑅 =  𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐶𝑇𝑜𝑡𝑎𝑙⁄   (1) 

 𝑁𝑅𝑅 = 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑎𝑏𝑙𝑒⁄   (2) 

where RR and NRR are the repair rate and the normalized 
repair rate respectively. 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑  is the number of chips 

repaired. 𝐶𝑇𝑜𝑡𝑎𝑙 and 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑎𝑏𝑙𝑒 are the total number of chips 

and the number of theoretically repairable chips respectively. 
𝐶𝑇𝑜𝑡𝑎𝑙 includes theoretically unrepairable chips as well which 
may downplay the efficiency of an RA algorithm. However, 
NRR is calculated independent of these unrepairable chips, so 
it is better suited for estimating the yield of an RA algorithm. 
If an algorithm is not able to repair the chip, it is deemed 
unusable and discarded, thereby making it crucial for an RA 
algorithm to have a high repair rate. To make the repair viable, 
an RA algorithm should be selected which has a high repair 
rate along with a feasible runtime. 

Exhaustive algorithms like Branch-and-Bound [1], 
PAGEB [1], Faulty Line Covering Algorithm (FLCA) [3], and 
Fault Driven Comprehensive algorithm [2] construct a search 
tree and are able to find a repair solution whenever one exists, 
i.e. these algorithms have a NRR of 100%. While the Fault 
Driven Comprehensive algorithm [2] branches for each faulty 
cell, FLCA [3] only branches for each faulty line. FLCA is 
based on the principle that a faulty row with k faults can be 
covered either by a spare row or k spare columns. A similar 
repair approach is followed for a faulty column. The single 
faults are also repaired separately in the algorithm, reducing 
the number of branches significantly. However, with a large 
number of faults, the space and time complexity of the 
algorithm increases exponentially which makes it infeasible in 
the manufacturing line. 

Heuristic algorithms like Broadside [2], Repair-Most [1], 
LECA [3] and OSP [4] are capable of finding the repair 
solution quickly, but they are not able to achieve an optimal 
repair rate.  Broadside Algorithm [2] is a greedy heuristic 
algorithm that assigns a spare row or column, whichever is in 
excess when it repairs a fault. In the case of same number of 
spare rows and columns, the assignment is based on the 
algorithm design. Compared to the other algorithms, 
Broadside has a low runtime but also a low repair rate.  

The Largest Effective Coefficient Algorithm (LECA) [3] 
uses Effective Coefficients (EC) to rank the rows and columns 
of a chip in the order of repair. The EC considers both fault 
counters and complements of a faulty line. LECA is not very 
effective with random faulty bits distribution as effective 
coefficients have less significance. Its performance varies a lot 
with the variation in the number of single faults. 

One Side Pivot algorithm (OSP) [4] uses pivot fault 
properties to find repair priorities reducing the analysis time 
even when the fault rate is high. Faults are classified into pivot 
faults, intersection faults, and OSP faults. Pivot fault is a fault 
that is not included in any other faulty line. An intersection 
fault is included in both a faulty column and row. One side 

pivot fault is a pivot fault, which is not included in a faulty line 
that does not have an intersection fault. If a fault is a pivot in 
its row, it is solved using a spare column and vice versa. Thus, 
the time taken to find a solution by this algorithm is low but it 
does not achieve an optimal repair rate. We have tabulated the 
time complexities of RA algorithms used for comparison with 
the AlphaRA algorithm in Table 1.  

Table 1: Time Complexity of the algorithms 

Algorithm Time complexity Remarks 

Broadside 𝑂(𝑛) n is number of faults 

FLCA 𝑂 (2(
𝑛−𝑆𝐹

𝑚
+1) − 1) 

n is number of total faults,  
SF is number of single faults, 
m is the least faulty cell / line 

LECA 
𝑂(max{𝑅𝐴, 𝐶𝐴}2

∙ 𝑙𝑜𝑔𝑚𝑎𝑥{𝑅𝐴, 𝐶𝐴}) 

RA is redundant rows 
CA is redundant columns 

OSP 𝑂(𝑚𝑎𝑥(𝑛, 𝑛𝑝. 𝑛)) 
n is number of faults  
np is number of pivot fault 

B. Must-Repair 

A row having more faulty cells than the available spare 

columns is said to be in must-repair condition [1]. Similarly, 

a column with more faulty cells than the available spare rows 

is also in must-repair condition.  A row (column) in must-

repair condition should always be repaired by a spare row 

(column). It is defined as 

∑ 𝑛𝑟𝑖
𝑟𝑖∈{𝑅}

> 𝑆𝑅, 𝑜𝑟 ∑ 𝑛𝑐𝑖
𝑐𝑖∈{𝐶}

> 𝑆𝐶  (3) 

where rows ri and columns ci belong to the set of all faulty 
rows {R} and columns {C} respectively. ∑nri and ∑nci are the 
total number of faults in row ri and column ci respectively. SR 
and SC are the available spare rows and columns. As 
illustrated in Fig. 2, column 0 has 2 faults which is more than 
the 1 available spare row. Thus column 0 is in must-repair 
condition and needs to be repaired by a spare column.  
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Fig. 2: An example of a 4×4 chip with column 0 in must-repair condition 

C. Monte Carlo Tree Search 

Tree Search Algorithms are commonly used in games 
where each tree node represents a game state. They search 
every possible move that may exist from a particular state to 
reach a solution. The brute force solution of considering every 
child node in the tree requires a lot of computational power. 
Thus, the selection of some moves over others, according to 
some policy, helps in speeding up the Tree Search. 

Monte Carlo Tree Search (MCTS) [6] is a tree search 
algorithm that selects some nodes over others based on node 
statistics to reach a solution faster. It performs a four-step 
process of selection, expansion, rollout, and backpropagation 
to determine the node statistics. 

In each MCTS simulation, the game is played to the end 
by selecting moves according to the Upper Confidence Bound 
for Trees (UCT) [7] formula shown in (4). When a leaf node 



is encountered, it is expanded and a random rollout is 
performed from that newly expanded node. The return value 
is then backpropagated in the tree to update the statistics. We 
maintain the following search statistics in each tree edge:  

𝑄(𝑠, 𝑎) - expected reward for taking action 𝑎 from state 𝑠 
𝑁(𝑠, 𝑎) - number of times action 𝑎 was taken from state 𝑠 

𝑈𝐶𝑇(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝐶 ∗ √
𝑙𝑛(𝑁(𝑠))

𝑁(𝑠, 𝑎)
 (4) 

where 𝐶  is an exploration parameter and 𝑁(𝑠)  is the total 
number of visits to the parent state 𝑠.  

Predictor + UCT (PUCT), shown in (5), further improves 
UCT to prioritize good moves by combining it with a predictor 
which guides the MCTS search. It removes the need to visit 
all the child nodes at least once. Thus, only promising moves 
are explored which reduces the number of MCTS simulations 
required to arrive at the solution. Additionally, we also 
maintain 𝑃(𝑠, 𝑎) , which is the probability given by the 
predictor of taking action 𝑎 from state 𝑠. 

𝑃𝑈𝐶𝑇(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝐶𝑝𝑢𝑐𝑡 ∗ 𝑃(𝑠, 𝑎) ∗
√𝑁(𝑠)

1 + 𝑁(𝑠, 𝑎)
 (5) 

where 𝐶𝑝𝑢𝑐𝑡 is an exploration parameter. These four steps are 
iterated for a fixed number of simulations and the action with 
the best statistic is selected, with ties broken randomly. 

D. AlphaGo and Alpha Zero  

Researchers have developed an algorithm that efficiently 
combines DNN and MCTS with self-play to predict the best 
moves for the complex game of Go. AlphaGo [8] is the first 
paper in the series, which shows that DNNs could play Go by 
predicting a policy and value estimate. A policy π is a mapping 
from actions to the probabilities of selecting those actions. The 
value function of a state is the estimate of how good it is for 
an agent following π to be in that state. These estimates are 
then used to assist a tree-based look ahead search by selecting 
which actions to take from given states. AlphaGo also 
incorporates supervised learning on a dataset of expert moves 
of professional Go players to train the neural network.  

AlphaGo Zero [9], improves upon AlphaGo by starting 
from zero human knowledge. It combines the value and policy 
network into a single neural network and replaces the rollouts 
in MCTS with the value returned from the DNN. AlphaZero 
[5] demonstrates the effectiveness and generality of the 
AlphaGo Zero further by making a few subtle modifications 
to it and generalizing it for games like Chess and Shogi. The 
extension of AlphaZero for single-player games has been 
discussed in [10]. 

E. Memory Fault Simulators  

For the development of AlphaRA, we required a variation 
of fault patterns and a large number of chips which is why we 
used a Memory Fault Simulator. We also needed chips of 
different sizes for checking the scalability of the algorithm. 
Various simulators such as VLASIC [11], RAISIN [12], and 
SEARS [13] have been proposed in the literature that aim to 
simulate the fault patterns found in real memory chips. 
SEARS is one of the latest simulators that incorporates 
numerous fault patterns and multiple memory repair 
algorithms. It also supports generating chips of varying sizes. 
Thus, in this paper, we use SEARS to generate faulty chips. 

III. PROPOSED SOLUTION - ALPHARA 

We describe the proposed RA algorithm, AlphaRA, in the 
following subsections. 

A. Redundancy Analysis as a Markov Decision Process 

We formulate RA as a Markov Decision Process (MDP). 
The state 𝒔 consists of the memory chip and the number of 
spare rows and columns available. The memory chip is 
represented by an 𝑁 × 𝑁 2D Boolean matrix with 1 indicating 
a faulty cell. The action space is a vector of length 2𝑁 where 
the first 𝑁 elements correspond to selecting rows 0 to 𝑁 − 1 
and the next 𝑁 elements correspond to selecting columns 0 to 
𝑁 − 1 for repair.  

For a given state 𝑠, we first check if there are any faulty 
lines in must-repair condition. If so, the action set for 𝑠 
consists only of the faulty lines in must-repair condition. 
Otherwise, the action set consists of all the faulty lines in the 
chip. When a faulty row or column is repaired, all the 1s in 
that line are zeroed out in 𝑠. 

An 8×8 chip with 2 spare rows and 2 spare columns is 
shown along with the initial state representation in Fig. 3 (a). 
The action space is of length 16 with actions 0 to 7 indicative 
of rows 0 to 7 being selected for repair, whereas actions 8 to 
15 represent columns 0 to 7 being selected. Since row 1 and 
column 4 are in must-repair condition, the only valid actions 
from 𝑠0 are 1 and 12. The agent selects action 1 in Fig. 3 (a) 
and hence row 1 is repaired by zeroing it out as depicted in 
Fig. 3 (b). The agent chooses actions until the episode 
terminates which occurs if either of the following conditions 
is satisfied:  

i. all faults in the chip are successfully repaired 
ii. all spares are exhausted leaving the chip unrepaired  

The complete episode for the sample 8×8 chip continues 
from Fig. 3 (c) through Fig. 3 (e). Here, the agent repairs the 
chip in 4 time steps, using all 4 spares. 

The reward is given to AlphaRA at the end of an episode, 
thus the reward structure is sparse. The reward is +1 if the 
agent successfully repairs the chip and -1 if it fails to do so. 
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Fig. 3: State Space and Action Set on an 8×8 chip with 2 spare rows and 
columns each 
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Fig. 4: Training pipeline of AlphaRA 

B. Training through Self-play 

Training of AlphaRA starts with self-play as shown in Fig. 
4. A self-play episode consists of the repair process of a single 
chip. In each iteration, a number of self-play episodes are 
carried out. For each time step t of repair, a number of MCTS 
simulations are performed starting from the current state 𝑠𝑡 
and an improved policy 𝝅𝑡 is returned. The estimates obtained 
from MCTS are then used as new targets to subsequently train 
the DNN and get improved policy and value functions. 

The DNN 𝑓𝜃 , parameterized by 𝜃 , is trained from the 
dataset collected from self-play. It takes the state of the chip 
(𝑠) as input and has two outputs: a value of state 𝑣(𝑠)  ∈
 [−1, 1] and a vector of action probabilities 𝒑𝜃(𝑠). The DNN 
is initialized to random weights, thus the initial policy 𝒑𝜃 is 
also random. For each state 𝑠, an MCTS search is executed, 
guided by the DNN 𝑓𝜃. The DNN acts as the predictor. The 
actions in MCTS are selected according to the PUCT formula 
(5) until a leaf node is encountered. Once a leaf node 𝑠ʹ is 
encountered, it evaluates the node by using the DNN to predict 
a policy and a value (𝒑𝜃(𝑠ʹ), 𝑣(𝑠ʹ)) for this node. Instead of 
performing a rollout from  𝑠ʹ , it backpropagates 𝑣(𝑠ʹ)  and 
updates the Q and N values of all nodes along the current 
simulation path. If instead, we come across a terminal state 
during the search, we propagate the actual reward 𝑧, i.e. +1 if 
the chip is repaired and -1 otherwise. The MCTS outputs a 
vector of action probabilities π, which is generally much 
stronger than the DNN policy 𝒑𝜃. 

 The data generated from each time step 𝑡 of a self-play 
episode is stored as a tuple (𝑠𝑡 , 𝜋𝑡 , 𝑧) where 𝑧 is the reward at 
the end of the episode. This data is inserted in a replay buffer 
queue of a fixed length. Since successive states are strongly 
correlated, we do a random uniform sampling from the replay 
buffer in order to train the DNN. The objective is to minimize 
the Mean Squared Error between the predicted value 𝑣 and the 
target 𝑧  and to maximize the similarity between predicted 
neural network policy 𝒑𝜃  and target MCTS policy π by 
minimizing the cross-entropy loss. The combined loss 
function [9], ℓ is defined as 

ℓ =  (z − v)2 − 𝝅T  ∙ log(𝒑) (6) 

Thus, the MCTS drives the DNN to output better policies, 
which in turn guides the MCTS to search the action space 
more efficiently, and iteratively increases the overall strength 
of the algorithm. 

0.0

0.3

0.0

0.1

0.2 0.0 0.1 0.00.0 0.0

0.0

0.0

0.1

0.0

0.1 0.1

(a) (b)  
Fig. 5: An example of rotation and swapping 

C. State Rotation , Reflection and Swapping 

Since rotating, reflecting, or swapping operations do not 
affect the repairability of the chip, we augment the data so that 
the DNN has a richer dataset to learn from. Fig. 5 (a) shows 
the state in Fig. 3 (b) rotated by 90˚ anti-clockwise. It 
illustrates the state and the corresponding policy rotated. This 
also changes the availability of spares. Earlier there were 2 
spare columns and 1 spare row available, but in the rotated 
version, there are 2 spare rows and 1 spare column. Fig. 5 (b) 
shows swapping of columns 2 and 4. For every state, we rotate 
it by 90°, 180°, and 270° along with their reflections to get 8 
states. We also swap 4 pairs of row and column indices each 
to get 8 more states. Thus, for every state from self-play we 
obtain a total of 16 states. These states are stored in the replay 
buffer queue. 

D. Contest 

AlphaZero is designed for two-player adversarial board 
games, whereas RA can be viewed as a single-player game. In 
two-player adversarial games, the game result (win/draw/lose) 
is clear. For RA, we provide the same chips from the 
validation set to both the best and the current AlphaRA agent 
and the game result is determined as follows: 

i. If both agents repair the chip: 

a. If the spare utilization by both the agents is the same, 
the game ends in a draw. 

b. Otherwise, the agent using fewer number spares is the 
winner 

ii. If both agents fail to repair the chip: 

a. If both agents repair the same number of faults, the 
game ends in a draw. 

b. Otherwise, the agent repairing more faults is the 
winner. 

iii. If one agent repairs the chip and the other agent fails to do 
so, the agent which repairs the chip is the winner.  

We include spare utilization as a criterion along with repair 
rate, to determine the performance of an agent. This is because 
an algorithm that uses fewer spares is preferred as spares 
saved can be used further in the manufacturing process. If the 
current agent beats the best agent by a certain threshold, the 
best model is updated. The next iteration of AlphaRA self-
play starts after the contest phase.  

 



IV. EXPERIMENTAL SETUP  

 Different chips sizes and fault rates were used for 
performing experiments. We used the SEARS simulator 
which had Broadside, LECA, OSP, and FLCA algorithms 
implemented. We elaborate the modifications to the simulator 
parameters in this section along with the experimental setup 
used for AlphaRA which includes the DNN architecture and 
the hyperparameters used. 

A. Experimental Setup – SEARS 

We generate datasets of chip sizes 8×8, 16×16, and 32×32 
with the parameters shown in Table 2. The underlying fault 
distribution is similar to SEARS [13]. The training dataset is 
used for each self-play episode, whereas the validation dataset 
is used in contest phase of AlphaRA. All the results presented 
in Section V (B to E) are for 16×16 chips on the entire test set.  

Table 2: Simulation Parameters for various chip sizes 

# Chip Size Spares Fault range Training/Testing/Validation Data 

1 8 2 [9%, 31%] 1×104 

2 16 4 [4%, 14%] 5×104 

3 32 6 [2%, 5%] 1×104 

B. Experimental Setup – AlphaRA 

The DNN used in AlphaRA has 4 convolution layers used 
with batch normalization and ReLU activation function. The 
features extracted from the DNN are appended with available 
spares data and is the input to the fully connected layers. There 
are 2 output heads to predict policy and value. Softmax is 
applied on the output of the policy head whereas 𝑡𝑎𝑛ℎ  is 
applied on the output of the value head. The loss function is a 
summation of the policy loss, which is measured by cross-
entropy between 𝒑𝜃 (DNN policy) and 𝝅 (MCTS policy) and 
the value loss, which is the mean-squared error between 𝑣 
(DNN value) and 𝑧 (MCTS value) as shown in (6). 

The AlphaRA training hyperparameters are as follows. 
Each training iteration calls 100 episodes of self-play. This 
self-play data is stored in a replay buffer queue of length 
2×105. The number of MCTS simulations used in training is 
128 while the exploration factor 𝐶𝑝𝑢𝑐𝑡 is set to 1. Since RA 
is invariant to rotation, reflection, and swapping, we augment 
our data with 4 rotations and their reflections and 8 swaps (4 
each for rows and columns). At every iteration, we pit our 
current agent against the best agent on 200 chips from the 
validation set. If the current model beats the best model by a 
threshold of 55%, the current model becomes the best model. 

Our implementation is based on [14], which is a 
synchronous single-thread single-GPU implementation on the 
Pytorch framework. The results are benchmarked on a system 
with Intel® i9-9900K (5.00 GHz), Nvidia 2080Ti (11GB), 
and 32GB RAM on an Ubuntu 18.04.4 LTS OS. 

V.  RESULTS AND ANALYSIS 

A. Empirical Analysis of AlphaRA training  

In order to determine which training iteration of AlphaRA 
gives the best result, we compare their performance on the 
validation dataset. Fig. 6 illustrates the normalized repair rate 
of AlphaRA as the training progresses. Every time the best 
neural network is updated, we run AlphaRA with just 2 MCTS 
simulations. With just 15 training iterations (~5 hours), it 
starts to outperform LECA and OSP. The best model is found 
in the 76th iteration (~51 hours) and has ~97% normalized 
repair rate. All subsequent results for 16×16 chips are obtained 
using this model.  

 

Fig. 6: Normalized repair rate of AlphaRA during training for 100 iterations  

B. Yield Comparison 

For assessing the strength of AlphaRA, we compare its 
normalized repair rate against other algorithms. Out of 50000 
test dataset chips, 35159 chips were theoretically repairable. 
Broadside, LECA, and OSP were able to repair 9789, 33063, 
and 33185 chips respectively while AlphaRA with 32 MCTS 
simulations was able to repair 35090 chips, achieving an 
average normalized repair rate of 99.8%, which is 5.4% more 
than the next best algorithm LECA. In Fig. 7 we compare the 
normalized repair rate for varying chip faults. We observe that 
for the number of faults less than 11 (~ 4.29%), all algorithms 
have a normalized repair rate above 95% but with an increase 
in the number of faults, it starts decreasing rapidly for the 
existing algorithms. In comparison, AlphaRA is able to 
maintain a high normalized repair rate throughout. 

 
Fig. 7: Normalized repair rate comparison of AlphaRA against heuristic 
algorithms for varying chip faults. Normalized repair rate of Broadside drops 
below 65% for more than 11 faults. 

C. Spare Utilization  

In Table 3, we compare the spare row, spare column, and 
total spare utilization. With an average total spare utilization 
of 7.107, AlphaRA has the least spare utilization compared to 
all the algorithms under consideration. OSP gives a higher 
preference to spare columns whereas LECA gives a higher 
preference to spare rows. This leads to these algorithms 
exhausting either spare rows or columns quickly resulting in a 
lower normalized repair rate. However, AlphaRA gives 
approximately equal preference to spare rows and columns 
(~3.5), achieving a much higher normalized repair rate.  

Table 3: Average spare utilization by different algorithms 

Algorithm AlphaRA LECA OSP Broadside 

Spare Rows 3.532 3.692 3.337 3.963 

Spare Columns 3.575 3.422 3.791 3.884 

Total Spares 7.107 7.114 7.128 7.847 

AlphaRA 
Improvement 

0.00% 0.10% 0.29% 9.43% 



D. Unique chips repaired by AlphaRA 

AlphaRA repairs many unique chips that are not repaired 
by other heuristic algorithms. Table 4 illustrates that our 
algorithm is able to repair 2055 chips (~ 4.11 %) that were not 
repaired by LECA and 1946 chips (~3.89%) not repaired by 
OSP. Although there are still 28 chips (~0.056%) repaired by 
LECA and 41 chips (~0.082%) repaired by OSP that are not 
repaired by AlphaRA, overall numbers suggest that our 
algorithm learns a strategy that is qualitatively different from 
the heuristics of LECA and OSP to repair the chips. We have 
demonstrated the end-to-end repair process of one such unique 
chip in the Appendix and compared it with the repair 
processes of LECA and OSP. 

Table 4: Unique chips repaired by different algorithms. 

Algorithm 
Not Solved By 

FLCA LECA OSP AlphaRA 

S
o
lv

ed
 B

y
 

FLCA 0 2096 1974 69 

LECA 0 0 1374 28 

OSP 0 1496 0 41 

AlphaRA 0 2055 1946 0 

E. Yield Comparison for Number of MCTS Simulations 

Changing the number of MCTS simulations has an impact 
on the normalized repair rate and runtime of the proposed 
algorithm. Fig. 8 (a) shows that as we increase the number of 
MCTS simulations to 64, AlphaRA performance increases to 
99.9% of the FLCA repair rate. Even without any MCTS 
simulations, the number of chips repaired by AlphaRA is more 
than the existing heuristic algorithms. Although increasing the 
MCTS simulations increases the repair rate, the runtime of the 
algorithm also increases as shown in Fig. 8 (b). 

 
Fig. 8: (a) Normalized repair rate and (b) Algorithm runtime per chip with 
different number of MCTS simulations 

F. Performance and Scalability 

To demonstrate the scalability of AlphaRA on different 
chip sizes, we train it on 8×8 chips, as well as 32×32 chips. 
The results are shown in Fig. 9. The number of MCTS 
simulations used in these experiments is equal to the size of 
action space, i.e. 16 for 8×8, 32 for 16×16, and 64 for 32×32 
chips. AlphaRA maintains a normalized repair rate above 98% 
across all the chip sizes under consideration. For 16×16 and 
32×32 chip sizes, AlphaRA outperforms the heuristic 
algorithms by a margin of at least 4%. 

 
Fig. 9: Scalability of AlphaRA across different chip sizes 

Since AlphaRA does not exhaustively search all moves, it 
scales better than exponential algorithms for larger chip sizes. 

VI. FUTURE SCOPE AND CONCLUSION 

Ongoing work aims to scale AlphaRA to larger chip sizes. 
Although AlphaRA learns through self-play reinforcement 
learning, we opine that faster convergence can be achieved by 
using the repair actions of the heuristic algorithms to first train 
the DNN in a supervised manner rather than initializing it 
randomly, similar to what has been used in AlphaGo.  

In this paper, we have introduced AlphaRA, a first-of-its-
kind AlphaZero based RA algorithm. We have compared it 
with existing heuristic and exhaustive algorithms against 
different performance metrics. With just 32 MCTS 
simulations, AlphaRA achieves an average normalized repair 
rate of 99.8% on 16×16 chips. It surpasses heuristic 
algorithms such as OSP by 5.42% while having the least spare 
utilization amongst all. It outperforms FLCA in terms of 
runtime, thus making it scalable for larger chip sizes. In 
addition, it maintains its performance with an increasing 
number of single faulty lines and has the ability to learn new 
qualitative strategies without any domain knowledge. Due to 
these merits, AlphaRA has the potential to be used in large-
scale memory device manufacturing. 
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APPENDIX 

In this section, we present a 16×16 chip from the test set 
which was a unique chip repaired by AlphaRA. Fig. 10 
illustrates the memory chip, with 4 spare rows and columns 
along with faulty cells in red. Fig. 11 (a) to (g) show the 
sequence of actions performed to repair the faulty lines based 
on the raw action probabilities predicted by the AlphaRA 
neural network without action masking or MCTS simulations. 
In Fig. 11 (a), we observe that row 0 has 6 faults which are 
more than the number of available spare columns. Hence, it is 
in must-repair condition and has to be repaired by a spare row 
which is correctly identified by the neural network by giving 
it a very high probability of 0.993. After that, rows 14, 13, and 
15 are repaired followed by columns 8, 7, and 10. This series 
of actions taken by AlphaRA allow it to repair the chip. In 
contrast, LECA and OSP leave 2 and 1 faults respectively 
leaving the chip unrepaired. 
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Fig. 10: The selected 16×16 chip with a 20 faults and 4 spare rows and 
columns. A sample row and column action probability is illustrated 
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Fig. 11. AlphaRA repair, (a) Step 1: Row 0 repaired with 6 faults, (b) Step 2: Row 14 repaired with 4 faults, (c) Step 3: Row 13 repaired with 3 faults, (d) Step 
4: Row 15 repaired with 4 faults, (e) Step 5: Column 8 repaired with 1 fault, (f) Step 6: Column 7 repaired with 1 fault, (g) Step 8: Column 10 repaired with 1 
fault and AlphaRA complete repair solution, (h) LECA complete repair solution, (i) OSP complete repair solution. 


