
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

AlphaRA: An AlphaZero based approach to

Redundancy Analysis

Helik Kanti Thacker1, Atishay Kumar1, Adrita Barari1, Damini1, Ankit Gupta1, Keerthi Kiran Jagannathachar1, Deokgu Yoon2

DRAM Solutions1, DRAM Product Engineering Team2

Samsung Semiconductor India Research and Development1, Samsung Electronics2

{h.thacker, atishay.1, adrita.b, damini20.d, ankit.g2, keerthi.k, deokgu.yoon}@samsung.com

Abstract— Manufacturing flaws in memory devices give rise

to faulty cells rendering the chips unusable and consequently

reducing the wafer yield. To repair faulty memory cells,

redundancies are included in the form of spare rows and

columns in the memory. Redundancy Analysis is the process of

mapping these spare rows and columns to repair faulty lines in

the chip. However, Redundancy Analysis is an NP-complete

problem, making it difficult to find a trade-off between repair

rate and runtime, especially for large chip sizes. In this paper,

we introduce AlphaRA, a first-of-its-kind memory repair

algorithm based on the Reinforcement Learning algorithm

AlphaZero. We explicate AlphaRA as a single agent problem

that learns the strategies of Redundancy Analysis through self-

play. Starting tabula rasa, AlphaRA achieves an average

normalized repair rate of 99.8% on 16×16 chips with only 32

MCTS simulations. It outperforms the next best heuristic

algorithm by 5.42% while utilizing 0.29% lesser spares, making

it a suitable Redundancy Analysis algorithm for mass

production of memory devices.

Keywords—reinforcement learning, redundancy analysis,

AlphaZero, memory repair.

I. INTRODUCTION

The semiconductor manufacturing industry has seen a
rapid surge due to advancements in memory technology. In
order to meet the increasing demand for memory devices, the
leading producers are manufacturing them in huge amounts on
a single wafer. Manufacturers have also increased memory
densities and decreased the node sizes in these devices due to
which the probability of faults in the memory has increased.
During the fabrication process, there are several external
factors such as temperature, equipment inaccuracies,
undesired chemical and airborne particles that can increase the
faults in the chip, leading to a reduction in the overall wafer
yield.

With increasing fault probabilities in the memory devices,
semiconductor manufacturers have incorporated redundancies
into the memories in the form of spare rows and columns
which can be used to repair the chips. The process of
allocating these spare rows and columns to faulty lines in the
chip is called Redundancy Analysis (RA) [1]. A chip is
considered as repaired only if all the faulty lines are mapped
to the spares. As illustrated in Fig. 1 the chip has 5 faulty cells,
1 spare row, and 2 spare columns. The chip is repaired by
mapping the spare row to row 3 and the spare columns to
columns 2 and 3. These mappings are used during memory
repair to substitute the entire faulty rows and columns. During
a read or write request to a faulty line, the mapped spare is
accessed instead of accessing the faulty line. The decision of
allocation of spares to faulty rows and columns has a high
impact on the overall yield. Since RA is an NP-complete
problem [1], an exponential-time algorithm is required to
achieve the maximum possible yield.

0

1

2

3

Faulty Cell

Spare Column

Spare Row

Repaired Column

Repaired Row

Repaired Cell

0 1 2 3

Fig. 1: RA repair process for a 4x4 memory chip with 5 faulty cells having 1
spare row and 2 spare columns

Previous research has focused on heuristic and exhaustive
RA algorithms. Heuristic RA algorithms such as Broadside
[2], Repair-Most [1], LECA [3] and OSP [4] have lower
runtime but also have low repair rates. On the other hand,
exhaustive RA algorithms, such as FLCA [3], Branch-and-
Bound, and PAGEB [1] achieve optimal repair rates but with
exponential time complexities. Section II further discusses the
existing algorithms along with their merits and limitations.

Heuristic algorithms currently used for memory repair are
designed with certain insights in mind such as patterns of
faulty rows and columns. The motivation for exploring a
Reinforcement Learning (RL) approach for RA is driven by
the fact that RL allows the agent to self-discover
unconventional strategies, without requiring insights into fault
patterns. The agent learns to repair the chip without any design
insights or handcrafted rules.

In this paper, we introduce an AlphaZero [5] based RA
algorithm, AlphaRA. It learns from its environment by
combining Monte Carlo Tree Search (MCTS) and Deep
Neural Networks (DNN) iteratively for policy evaluation and
improvement. Through self-play over many episodes, the
agent learns a policy to achieve a high repair rate.

The contributions of our paper are as follows:

 We explicate AlphaZero which was originally
developed for two-player zero-sum games, as a
single-player RA algorithm

 AlphaRA outperforms heuristic algorithms in terms
of yield and spare utilization while maintaining a
comparable yield with the exhaustive algorithms

 We also demonstrate the scalability of AlphaRA on
different chip sizes

Thus, we show that AlphaRA is an effective memory
repair algorithm for large scale production of memory devices.

The rest of the paper has been organized as follows.
Section II gives a background of the existing memory repair
algorithms and the key concepts related to AlphaZero and
Memory Fault Simulators. Section III describes the proposed
solution AlphaRA. Experimental setup in Section IV is
followed by the results and analysis in Section V. Finally,
Section VI explains the future scope of our work followed by
the conclusion.

II. BACKGROUND

A. Redundancy Analysis Algorithms

Effective RA algorithms should provide a good mapping
of faulty rows and columns to the spares in the memory device
within a reasonable time. Such an algorithm should have a
high repair rate, which can be measured by the number of
chips repaired by the algorithm. The repair rate and
normalized repair rate [1] are defined as:

 𝑅𝑅 = 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐶𝑇𝑜𝑡𝑎𝑙⁄ (1)

 𝑁𝑅𝑅 = 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑎𝑏𝑙𝑒⁄ (2)

where RR and NRR are the repair rate and the normalized
repair rate respectively. 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 is the number of chips

repaired. 𝐶𝑇𝑜𝑡𝑎𝑙 and 𝐶𝑅𝑒𝑝𝑎𝑖𝑟𝑎𝑏𝑙𝑒 are the total number of chips

and the number of theoretically repairable chips respectively.
𝐶𝑇𝑜𝑡𝑎𝑙 includes theoretically unrepairable chips as well which
may downplay the efficiency of an RA algorithm. However,
NRR is calculated independent of these unrepairable chips, so
it is better suited for estimating the yield of an RA algorithm.
If an algorithm is not able to repair the chip, it is deemed
unusable and discarded, thereby making it crucial for an RA
algorithm to have a high repair rate. To make the repair viable,
an RA algorithm should be selected which has a high repair
rate along with a feasible runtime.

Exhaustive algorithms like Branch-and-Bound [1],
PAGEB [1], Faulty Line Covering Algorithm (FLCA) [3], and
Fault Driven Comprehensive algorithm [2] construct a search
tree and are able to find a repair solution whenever one exists,
i.e. these algorithms have a NRR of 100%. While the Fault
Driven Comprehensive algorithm [2] branches for each faulty
cell, FLCA [3] only branches for each faulty line. FLCA is
based on the principle that a faulty row with k faults can be
covered either by a spare row or k spare columns. A similar
repair approach is followed for a faulty column. The single
faults are also repaired separately in the algorithm, reducing
the number of branches significantly. However, with a large
number of faults, the space and time complexity of the
algorithm increases exponentially which makes it infeasible in
the manufacturing line.

Heuristic algorithms like Broadside [2], Repair-Most [1],
LECA [3] and OSP [4] are capable of finding the repair
solution quickly, but they are not able to achieve an optimal
repair rate. Broadside Algorithm [2] is a greedy heuristic
algorithm that assigns a spare row or column, whichever is in
excess when it repairs a fault. In the case of same number of
spare rows and columns, the assignment is based on the
algorithm design. Compared to the other algorithms,
Broadside has a low runtime but also a low repair rate.

The Largest Effective Coefficient Algorithm (LECA) [3]
uses Effective Coefficients (EC) to rank the rows and columns
of a chip in the order of repair. The EC considers both fault
counters and complements of a faulty line. LECA is not very
effective with random faulty bits distribution as effective
coefficients have less significance. Its performance varies a lot
with the variation in the number of single faults.

One Side Pivot algorithm (OSP) [4] uses pivot fault
properties to find repair priorities reducing the analysis time
even when the fault rate is high. Faults are classified into pivot
faults, intersection faults, and OSP faults. Pivot fault is a fault
that is not included in any other faulty line. An intersection
fault is included in both a faulty column and row. One side

pivot fault is a pivot fault, which is not included in a faulty line
that does not have an intersection fault. If a fault is a pivot in
its row, it is solved using a spare column and vice versa. Thus,
the time taken to find a solution by this algorithm is low but it
does not achieve an optimal repair rate. We have tabulated the
time complexities of RA algorithms used for comparison with
the AlphaRA algorithm in Table 1.

Table 1: Time Complexity of the algorithms

Algorithm Time complexity Remarks

Broadside 𝑂(𝑛) n is number of faults

FLCA 𝑂 (2(
𝑛−𝑆𝐹

𝑚
+1) − 1)

n is number of total faults,
SF is number of single faults,
m is the least faulty cell / line

LECA
𝑂(max{𝑅𝐴, 𝐶𝐴}2

∙ 𝑙𝑜𝑔𝑚𝑎𝑥{𝑅𝐴, 𝐶𝐴})

RA is redundant rows
CA is redundant columns

OSP 𝑂(𝑚𝑎𝑥(𝑛, 𝑛𝑝. 𝑛))
n is number of faults
np is number of pivot fault

B. Must-Repair

A row having more faulty cells than the available spare

columns is said to be in must-repair condition [1]. Similarly,

a column with more faulty cells than the available spare rows

is also in must-repair condition. A row (column) in must-

repair condition should always be repaired by a spare row

(column). It is defined as

∑ 𝑛𝑟𝑖
𝑟𝑖∈{𝑅}

> 𝑆𝑅, 𝑜𝑟 ∑ 𝑛𝑐𝑖
𝑐𝑖∈{𝐶}

> 𝑆𝐶 (3)

where rows ri and columns ci belong to the set of all faulty
rows {R} and columns {C} respectively. ∑nri and ∑nci are the
total number of faults in row ri and column ci respectively. SR
and SC are the available spare rows and columns. As
illustrated in Fig. 2, column 0 has 2 faults which is more than
the 1 available spare row. Thus column 0 is in must-repair
condition and needs to be repaired by a spare column.

0 1 2 3
2 1 1 1

0 1

1 1

2 1

3 2

ci

 nciri nri

SC=2SR=1

Must-Repair

Column 0

Fig. 2: An example of a 4×4 chip with column 0 in must-repair condition

C. Monte Carlo Tree Search

Tree Search Algorithms are commonly used in games
where each tree node represents a game state. They search
every possible move that may exist from a particular state to
reach a solution. The brute force solution of considering every
child node in the tree requires a lot of computational power.
Thus, the selection of some moves over others, according to
some policy, helps in speeding up the Tree Search.

Monte Carlo Tree Search (MCTS) [6] is a tree search
algorithm that selects some nodes over others based on node
statistics to reach a solution faster. It performs a four-step
process of selection, expansion, rollout, and backpropagation
to determine the node statistics.

In each MCTS simulation, the game is played to the end
by selecting moves according to the Upper Confidence Bound
for Trees (UCT) [7] formula shown in (4). When a leaf node

is encountered, it is expanded and a random rollout is
performed from that newly expanded node. The return value
is then backpropagated in the tree to update the statistics. We
maintain the following search statistics in each tree edge:

𝑄(𝑠, 𝑎) - expected reward for taking action 𝑎 from state 𝑠
𝑁(𝑠, 𝑎) - number of times action 𝑎 was taken from state 𝑠

𝑈𝐶𝑇(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝐶 ∗ √
𝑙𝑛(𝑁(𝑠))

𝑁(𝑠, 𝑎)
 (4)

where 𝐶 is an exploration parameter and 𝑁(𝑠) is the total
number of visits to the parent state 𝑠.

Predictor + UCT (PUCT), shown in (5), further improves
UCT to prioritize good moves by combining it with a predictor
which guides the MCTS search. It removes the need to visit
all the child nodes at least once. Thus, only promising moves
are explored which reduces the number of MCTS simulations
required to arrive at the solution. Additionally, we also
maintain 𝑃(𝑠, 𝑎) , which is the probability given by the
predictor of taking action 𝑎 from state 𝑠.

𝑃𝑈𝐶𝑇(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝐶𝑝𝑢𝑐𝑡 ∗ 𝑃(𝑠, 𝑎) ∗
√𝑁(𝑠)

1 + 𝑁(𝑠, 𝑎)
 (5)

where 𝐶𝑝𝑢𝑐𝑡 is an exploration parameter. These four steps are
iterated for a fixed number of simulations and the action with
the best statistic is selected, with ties broken randomly.

D. AlphaGo and Alpha Zero

Researchers have developed an algorithm that efficiently
combines DNN and MCTS with self-play to predict the best
moves for the complex game of Go. AlphaGo [8] is the first
paper in the series, which shows that DNNs could play Go by
predicting a policy and value estimate. A policy π is a mapping
from actions to the probabilities of selecting those actions. The
value function of a state is the estimate of how good it is for
an agent following π to be in that state. These estimates are
then used to assist a tree-based look ahead search by selecting
which actions to take from given states. AlphaGo also
incorporates supervised learning on a dataset of expert moves
of professional Go players to train the neural network.

AlphaGo Zero [9], improves upon AlphaGo by starting
from zero human knowledge. It combines the value and policy
network into a single neural network and replaces the rollouts
in MCTS with the value returned from the DNN. AlphaZero
[5] demonstrates the effectiveness and generality of the
AlphaGo Zero further by making a few subtle modifications
to it and generalizing it for games like Chess and Shogi. The
extension of AlphaZero for single-player games has been
discussed in [10].

E. Memory Fault Simulators

For the development of AlphaRA, we required a variation
of fault patterns and a large number of chips which is why we
used a Memory Fault Simulator. We also needed chips of
different sizes for checking the scalability of the algorithm.
Various simulators such as VLASIC [11], RAISIN [12], and
SEARS [13] have been proposed in the literature that aim to
simulate the fault patterns found in real memory chips.
SEARS is one of the latest simulators that incorporates
numerous fault patterns and multiple memory repair
algorithms. It also supports generating chips of varying sizes.
Thus, in this paper, we use SEARS to generate faulty chips.

III. PROPOSED SOLUTION - ALPHARA

We describe the proposed RA algorithm, AlphaRA, in the
following subsections.

A. Redundancy Analysis as a Markov Decision Process

We formulate RA as a Markov Decision Process (MDP).
The state 𝒔 consists of the memory chip and the number of
spare rows and columns available. The memory chip is
represented by an 𝑁 × 𝑁 2D Boolean matrix with 1 indicating
a faulty cell. The action space is a vector of length 2𝑁 where
the first 𝑁 elements correspond to selecting rows 0 to 𝑁 − 1
and the next 𝑁 elements correspond to selecting columns 0 to
𝑁 − 1 for repair.

For a given state 𝑠, we first check if there are any faulty
lines in must-repair condition. If so, the action set for 𝑠
consists only of the faulty lines in must-repair condition.
Otherwise, the action set consists of all the faulty lines in the
chip. When a faulty row or column is repaired, all the 1s in
that line are zeroed out in 𝑠.

An 8×8 chip with 2 spare rows and 2 spare columns is
shown along with the initial state representation in Fig. 3 (a).
The action space is of length 16 with actions 0 to 7 indicative
of rows 0 to 7 being selected for repair, whereas actions 8 to
15 represent columns 0 to 7 being selected. Since row 1 and
column 4 are in must-repair condition, the only valid actions
from 𝑠0 are 1 and 12. The agent selects action 1 in Fig. 3 (a)
and hence row 1 is repaired by zeroing it out as depicted in
Fig. 3 (b). The agent chooses actions until the episode
terminates which occurs if either of the following conditions
is satisfied:

i. all faults in the chip are successfully repaired
ii. all spares are exhausted leaving the chip unrepaired

The complete episode for the sample 8×8 chip continues
from Fig. 3 (c) through Fig. 3 (e). Here, the agent repairs the
chip in 4 time steps, using all 4 spares.

The reward is given to AlphaRA at the end of an episode,
thus the reward structure is sparse. The reward is +1 if the
agent successfully repairs the chip and -1 if it fails to do so.

0

1

2

3

10 11 12 138 9

4

5

6

7
14 15

Failed Bit

0

1

2

3

10 11 12 138 9

State s1

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

action set

4

5

6

7
14 15

Spare Rows
Left = 1
Spare Columns
Left = 2

(a) (b)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0

Failed Bit
State s0

Spare Rows
Left = 2
Spare Columns
Left = 2

0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0

(c) (d) (e)

Must-Repair ColumnMust-Repair Row

Fig. 3: State Space and Action Set on an 8×8 chip with 2 spare rows and
columns each

a0

π0s0 s2 sT

Z

NN

p0 v0

s0

Zπ0

NN

p3 v3

s3

Zπ3

pi vi

si

Zπi

NN

pT vT

sT

ZπT

NN

Current NN better than Best NN?

Se
lf

-P
la

y

Update
Best

Pit Current NN
against Best NN

a2

π2

aT

πT

A
u

gm
e

nt
D

at
a

N
N

Tr
ai

n
in

g
C

on
te

st

R
ep

ea
t

fo
r

n
 It

er
at

io
n

s

yes

Store state and all rotations, translations and re flections of states and policies

Fig. 4: Training pipeline of AlphaRA

B. Training through Self-play

Training of AlphaRA starts with self-play as shown in Fig.
4. A self-play episode consists of the repair process of a single
chip. In each iteration, a number of self-play episodes are
carried out. For each time step t of repair, a number of MCTS
simulations are performed starting from the current state 𝑠𝑡
and an improved policy 𝝅𝑡 is returned. The estimates obtained
from MCTS are then used as new targets to subsequently train
the DNN and get improved policy and value functions.

The DNN 𝑓𝜃 , parameterized by 𝜃 , is trained from the
dataset collected from self-play. It takes the state of the chip
(𝑠) as input and has two outputs: a value of state 𝑣(𝑠) ∈
 [−1, 1] and a vector of action probabilities 𝒑𝜃(𝑠). The DNN
is initialized to random weights, thus the initial policy 𝒑𝜃 is
also random. For each state 𝑠, an MCTS search is executed,
guided by the DNN 𝑓𝜃. The DNN acts as the predictor. The
actions in MCTS are selected according to the PUCT formula
(5) until a leaf node is encountered. Once a leaf node 𝑠ʹ is
encountered, it evaluates the node by using the DNN to predict
a policy and a value (𝒑𝜃(𝑠ʹ), 𝑣(𝑠ʹ)) for this node. Instead of
performing a rollout from 𝑠ʹ , it backpropagates 𝑣(𝑠ʹ) and
updates the Q and N values of all nodes along the current
simulation path. If instead, we come across a terminal state
during the search, we propagate the actual reward 𝑧, i.e. +1 if
the chip is repaired and -1 otherwise. The MCTS outputs a
vector of action probabilities π, which is generally much
stronger than the DNN policy 𝒑𝜃.

 The data generated from each time step 𝑡 of a self-play
episode is stored as a tuple (𝑠𝑡 , 𝜋𝑡 , 𝑧) where 𝑧 is the reward at
the end of the episode. This data is inserted in a replay buffer
queue of a fixed length. Since successive states are strongly
correlated, we do a random uniform sampling from the replay
buffer in order to train the DNN. The objective is to minimize
the Mean Squared Error between the predicted value 𝑣 and the
target 𝑧 and to maximize the similarity between predicted
neural network policy 𝒑𝜃 and target MCTS policy π by
minimizing the cross-entropy loss. The combined loss
function [9], ℓ is defined as

ℓ = (z − v)2 − 𝝅T ∙ log(𝒑) (6)

Thus, the MCTS drives the DNN to output better policies,
which in turn guides the MCTS to search the action space
more efficiently, and iteratively increases the overall strength
of the algorithm.

0.0

0.3

0.0

0.1

0.2 0.0 0.1 0.00.0 0.0

0.0

0.0

0.1

0.0

0.1 0.1

(a) (b)
Fig. 5: An example of rotation and swapping

C. State Rotation , Reflection and Swapping

Since rotating, reflecting, or swapping operations do not
affect the repairability of the chip, we augment the data so that
the DNN has a richer dataset to learn from. Fig. 5 (a) shows
the state in Fig. 3 (b) rotated by 90˚ anti-clockwise. It
illustrates the state and the corresponding policy rotated. This
also changes the availability of spares. Earlier there were 2
spare columns and 1 spare row available, but in the rotated
version, there are 2 spare rows and 1 spare column. Fig. 5 (b)
shows swapping of columns 2 and 4. For every state, we rotate
it by 90°, 180°, and 270° along with their reflections to get 8
states. We also swap 4 pairs of row and column indices each
to get 8 more states. Thus, for every state from self-play we
obtain a total of 16 states. These states are stored in the replay
buffer queue.

D. Contest

AlphaZero is designed for two-player adversarial board
games, whereas RA can be viewed as a single-player game. In
two-player adversarial games, the game result (win/draw/lose)
is clear. For RA, we provide the same chips from the
validation set to both the best and the current AlphaRA agent
and the game result is determined as follows:

i. If both agents repair the chip:

a. If the spare utilization by both the agents is the same,
the game ends in a draw.

b. Otherwise, the agent using fewer number spares is the
winner

ii. If both agents fail to repair the chip:

a. If both agents repair the same number of faults, the
game ends in a draw.

b. Otherwise, the agent repairing more faults is the
winner.

iii. If one agent repairs the chip and the other agent fails to do
so, the agent which repairs the chip is the winner.

We include spare utilization as a criterion along with repair
rate, to determine the performance of an agent. This is because
an algorithm that uses fewer spares is preferred as spares
saved can be used further in the manufacturing process. If the
current agent beats the best agent by a certain threshold, the
best model is updated. The next iteration of AlphaRA self-
play starts after the contest phase.

IV. EXPERIMENTAL SETUP

 Different chips sizes and fault rates were used for
performing experiments. We used the SEARS simulator
which had Broadside, LECA, OSP, and FLCA algorithms
implemented. We elaborate the modifications to the simulator
parameters in this section along with the experimental setup
used for AlphaRA which includes the DNN architecture and
the hyperparameters used.

A. Experimental Setup – SEARS

We generate datasets of chip sizes 8×8, 16×16, and 32×32
with the parameters shown in Table 2. The underlying fault
distribution is similar to SEARS [13]. The training dataset is
used for each self-play episode, whereas the validation dataset
is used in contest phase of AlphaRA. All the results presented
in Section V (B to E) are for 16×16 chips on the entire test set.

Table 2: Simulation Parameters for various chip sizes

Chip Size Spares Fault range Training/Testing/Validation Data

1 8 2 [9%, 31%] 1×104

2 16 4 [4%, 14%] 5×104

3 32 6 [2%, 5%] 1×104

B. Experimental Setup – AlphaRA

The DNN used in AlphaRA has 4 convolution layers used
with batch normalization and ReLU activation function. The
features extracted from the DNN are appended with available
spares data and is the input to the fully connected layers. There
are 2 output heads to predict policy and value. Softmax is
applied on the output of the policy head whereas 𝑡𝑎𝑛ℎ is
applied on the output of the value head. The loss function is a
summation of the policy loss, which is measured by cross-
entropy between 𝒑𝜃 (DNN policy) and 𝝅 (MCTS policy) and
the value loss, which is the mean-squared error between 𝑣
(DNN value) and 𝑧 (MCTS value) as shown in (6).

The AlphaRA training hyperparameters are as follows.
Each training iteration calls 100 episodes of self-play. This
self-play data is stored in a replay buffer queue of length
2×105. The number of MCTS simulations used in training is
128 while the exploration factor 𝐶𝑝𝑢𝑐𝑡 is set to 1. Since RA
is invariant to rotation, reflection, and swapping, we augment
our data with 4 rotations and their reflections and 8 swaps (4
each for rows and columns). At every iteration, we pit our
current agent against the best agent on 200 chips from the
validation set. If the current model beats the best model by a
threshold of 55%, the current model becomes the best model.

Our implementation is based on [14], which is a
synchronous single-thread single-GPU implementation on the
Pytorch framework. The results are benchmarked on a system
with Intel® i9-9900K (5.00 GHz), Nvidia 2080Ti (11GB),
and 32GB RAM on an Ubuntu 18.04.4 LTS OS.

V. RESULTS AND ANALYSIS

A. Empirical Analysis of AlphaRA training

In order to determine which training iteration of AlphaRA
gives the best result, we compare their performance on the
validation dataset. Fig. 6 illustrates the normalized repair rate
of AlphaRA as the training progresses. Every time the best
neural network is updated, we run AlphaRA with just 2 MCTS
simulations. With just 15 training iterations (~5 hours), it
starts to outperform LECA and OSP. The best model is found
in the 76th iteration (~51 hours) and has ~97% normalized
repair rate. All subsequent results for 16×16 chips are obtained
using this model.

Fig. 6: Normalized repair rate of AlphaRA during training for 100 iterations

B. Yield Comparison

For assessing the strength of AlphaRA, we compare its
normalized repair rate against other algorithms. Out of 50000
test dataset chips, 35159 chips were theoretically repairable.
Broadside, LECA, and OSP were able to repair 9789, 33063,
and 33185 chips respectively while AlphaRA with 32 MCTS
simulations was able to repair 35090 chips, achieving an
average normalized repair rate of 99.8%, which is 5.4% more
than the next best algorithm LECA. In Fig. 7 we compare the
normalized repair rate for varying chip faults. We observe that
for the number of faults less than 11 (~ 4.29%), all algorithms
have a normalized repair rate above 95% but with an increase
in the number of faults, it starts decreasing rapidly for the
existing algorithms. In comparison, AlphaRA is able to
maintain a high normalized repair rate throughout.

Fig. 7: Normalized repair rate comparison of AlphaRA against heuristic
algorithms for varying chip faults. Normalized repair rate of Broadside drops
below 65% for more than 11 faults.

C. Spare Utilization

In Table 3, we compare the spare row, spare column, and
total spare utilization. With an average total spare utilization
of 7.107, AlphaRA has the least spare utilization compared to
all the algorithms under consideration. OSP gives a higher
preference to spare columns whereas LECA gives a higher
preference to spare rows. This leads to these algorithms
exhausting either spare rows or columns quickly resulting in a
lower normalized repair rate. However, AlphaRA gives
approximately equal preference to spare rows and columns
(~3.5), achieving a much higher normalized repair rate.

Table 3: Average spare utilization by different algorithms

Algorithm AlphaRA LECA OSP Broadside

Spare Rows 3.532 3.692 3.337 3.963

Spare Columns 3.575 3.422 3.791 3.884

Total Spares 7.107 7.114 7.128 7.847

AlphaRA
Improvement

0.00% 0.10% 0.29% 9.43%

D. Unique chips repaired by AlphaRA

AlphaRA repairs many unique chips that are not repaired
by other heuristic algorithms. Table 4 illustrates that our
algorithm is able to repair 2055 chips (~ 4.11 %) that were not
repaired by LECA and 1946 chips (~3.89%) not repaired by
OSP. Although there are still 28 chips (~0.056%) repaired by
LECA and 41 chips (~0.082%) repaired by OSP that are not
repaired by AlphaRA, overall numbers suggest that our
algorithm learns a strategy that is qualitatively different from
the heuristics of LECA and OSP to repair the chips. We have
demonstrated the end-to-end repair process of one such unique
chip in the Appendix and compared it with the repair
processes of LECA and OSP.

Table 4: Unique chips repaired by different algorithms.

Algorithm
Not Solved By

FLCA LECA OSP AlphaRA

S
o
lv

ed
 B

y

FLCA 0 2096 1974 69

LECA 0 0 1374 28

OSP 0 1496 0 41

AlphaRA 0 2055 1946 0

E. Yield Comparison for Number of MCTS Simulations

Changing the number of MCTS simulations has an impact
on the normalized repair rate and runtime of the proposed
algorithm. Fig. 8 (a) shows that as we increase the number of
MCTS simulations to 64, AlphaRA performance increases to
99.9% of the FLCA repair rate. Even without any MCTS
simulations, the number of chips repaired by AlphaRA is more
than the existing heuristic algorithms. Although increasing the
MCTS simulations increases the repair rate, the runtime of the
algorithm also increases as shown in Fig. 8 (b).

Fig. 8: (a) Normalized repair rate and (b) Algorithm runtime per chip with
different number of MCTS simulations

F. Performance and Scalability

To demonstrate the scalability of AlphaRA on different
chip sizes, we train it on 8×8 chips, as well as 32×32 chips.
The results are shown in Fig. 9. The number of MCTS
simulations used in these experiments is equal to the size of
action space, i.e. 16 for 8×8, 32 for 16×16, and 64 for 32×32
chips. AlphaRA maintains a normalized repair rate above 98%
across all the chip sizes under consideration. For 16×16 and
32×32 chip sizes, AlphaRA outperforms the heuristic
algorithms by a margin of at least 4%.

Fig. 9: Scalability of AlphaRA across different chip sizes

Since AlphaRA does not exhaustively search all moves, it
scales better than exponential algorithms for larger chip sizes.

VI. FUTURE SCOPE AND CONCLUSION

Ongoing work aims to scale AlphaRA to larger chip sizes.
Although AlphaRA learns through self-play reinforcement
learning, we opine that faster convergence can be achieved by
using the repair actions of the heuristic algorithms to first train
the DNN in a supervised manner rather than initializing it
randomly, similar to what has been used in AlphaGo.

In this paper, we have introduced AlphaRA, a first-of-its-
kind AlphaZero based RA algorithm. We have compared it
with existing heuristic and exhaustive algorithms against
different performance metrics. With just 32 MCTS
simulations, AlphaRA achieves an average normalized repair
rate of 99.8% on 16×16 chips. It surpasses heuristic
algorithms such as OSP by 5.42% while having the least spare
utilization amongst all. It outperforms FLCA in terms of
runtime, thus making it scalable for larger chip sizes. In
addition, it maintains its performance with an increasing
number of single faulty lines and has the ability to learn new
qualitative strategies without any domain knowledge. Due to
these merits, AlphaRA has the potential to be used in large-
scale memory device manufacturing.

ACKNOWLEDGMENT

The authors would like to thank the reviewers, Arta Seify,
Jeremy Salwen, Rajeev Verma, Ramya B T and Shubham
Deshmukh for their helpful discussions and insights.

REFERENCES

[1] S. K. Cho, K. Wooheon, C. Hyungjun, L. Changwook and K. Sungho,
A Survey of Repair Analysis Algorithms for Memories, ACM
Computer Survey, 2016.

[2] J. R. Day, "A fault-driven comprehensive redundancy algorithm,"
IEEE Des. Test Comput., vol. 2, no. 3, p. 35–44, Jun. 1985.

[3] F. Lombardi and W. K. Huang, "Approaches for the repair of
VLSI/WSI RRAMs by row/column deletion," International
Symposium on Fault-Tolerant Computing., pp. 342-347, 1988.

[4] J. Kim, K. Cho, W. Lee and S. Kang, "A new redundancy analysis
algorithm using one side pivot," International SoC Design Conference
(ISOCC), pp. 134-135, Jeju, 2014.

[5] D. Silver et. al., "Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm," ArXiv, vol.
abs/1712.01815, 2017.

[6] R. Coulom, "Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search," Computers and Games, 5th International
Conference, pp. 72-83, 2006.

[7] Kocsis, Levente and C. Szepesvári, "Bandit based monte-carlo
planning," European conference on machine learning, Springer, pp.
282-293, 2006.

[8] D. Silver, A. Huang, C. Maddison and e. al., "Mastering the game of
Go with deep neural networks and tree search," Nature 529, pp. 484-
489, 2016.

[9] D. Silver, J. Schrittwieser, K. Simonyan and e. al., "Mastering the game
of Go without human knowledge.," Nature, vol. 550, p. 354–359, 2017.

[10] A. Seify, "Single-Agent Optimization with Monte-Carlo Tree Search
and Deep Reinforcement Learning," Ph.D dissertation, Dept.of
Computing Science, University of Alberta, 2020.

[11] H. Walker and S. W. Director, "VLASIC: A Catastrophic Fault Yield
Simulator for Integrated Circuits," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 541-556, 1986.

[12] R. Huang, J. Yeh, J. Li and C. Wu, "Raisin: Redundancy Analysis
Algorithm Simulation," IEEE Design & Test of Computers,, vol. 24,
no. 4, pp. 386-396, 2007.

[13] Atishay, A. Gupta, R. Sonawat, H. K. Thacker and B. Prasanth,
"SEARS: A Statistical Error and Redundancy Analysis Simulator,"
27th International Conference on VLSI-SoC, pp. 117-122, 2019.

[14] S. Nair, "Github - Alpha Zero General," [Online]. Available:
https://github.com/suragnair/alpha-zero-general.

APPENDIX

In this section, we present a 16×16 chip from the test set
which was a unique chip repaired by AlphaRA. Fig. 10
illustrates the memory chip, with 4 spare rows and columns
along with faulty cells in red. Fig. 11 (a) to (g) show the
sequence of actions performed to repair the faulty lines based
on the raw action probabilities predicted by the AlphaRA
neural network without action masking or MCTS simulations.
In Fig. 11 (a), we observe that row 0 has 6 faults which are
more than the number of available spare columns. Hence, it is
in must-repair condition and has to be repaired by a spare row
which is correctly identified by the neural network by giving
it a very high probability of 0.993. After that, rows 14, 13, and
15 are repaired followed by columns 8, 7, and 10. This series
of actions taken by AlphaRA allow it to repair the chip. In
contrast, LECA and OSP leave 2 and 1 faults respectively
leaving the chip unrepaired.

Column Action Probability

R
o

w
 A

ct
io

n
 P

ro
b

a
b

il
it

y

Sp
a

re
 C

o
lu

m
n

s

Spare Rows

0
.0

2
9

0
.0

9
1

0
.1

7
2

0
.0

4
3

0
.0

0
7

0
.0

0
8

0
.0

0
0

0
.0

0
8

0
.0

1
0

0
.0

9
6

0
.0

0
2

0
.0

0
0

0
.0

0
0

0
.0

0
8

0
.0

0
0

0
.0

0
0

0.186

0.004

0.000

0.000

0.000

0.005

0.000

0.000

0.000

0.000

0.000

0.000

0.005

0.059

0.108

0.159

Fig. 10: The selected 16×16 chip with a 20 faults and 4 spare rows and
columns. A sample row and column action probability is illustrated

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.9

7
5

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0.000

0.025

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.5

3
0

0
.0

0
0

0
.0

0
0

0
.4

7
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.2

3
3

0
.5

1
1

0
.0

0
0

0
.2

5
6

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
4

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.0

0
0

0
.0

0
0

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.002

0.000

0.000

0.990

0
.0

0
1

0
.0

0
0

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.0

0
8

0
.0

2
4

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.006

0.551

0.000

0.407

0
.0

0
1

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
2

0
.0

1
4

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.001

0.310

0.659

0.012

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0.993

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.006

0.001

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

AlphaRA Final Solution LECA Final Solution OSP Final Solution

Fig. 11. AlphaRA repair, (a) Step 1: Row 0 repaired with 6 faults, (b) Step 2: Row 14 repaired with 4 faults, (c) Step 3: Row 13 repaired with 3 faults, (d) Step
4: Row 15 repaired with 4 faults, (e) Step 5: Column 8 repaired with 1 fault, (f) Step 6: Column 7 repaired with 1 fault, (g) Step 8: Column 10 repaired with 1
fault and AlphaRA complete repair solution, (h) LECA complete repair solution, (i) OSP complete repair solution.

