
978-1-6654-4175-9/21/$31.00 © 2021 IEEE

Redundancy Analysis using Genetic Algorithm
Helik Kanti Thacker1, Atishay Kumar1, Ankit Gupta1, Keerthi Kiran Jagannathachar1, Deokgu Yoon2

DRAM Solutions1 , DRAM Product Engineering Team2

Samsung Semiconductor India Research and Development1 , Samsung Electronics2
{h.thacker, atishay.1, ankit.g2, keerthi.k, deokgu.yoon}@samsung.com

Abstract—During the manufacturing of a DRAM chip,

external impurities, faulty deposition steps, or manufacturing

errors could generate chips with faulty memory cells rendering the

chip unusable. To overcome these faulty memory cells,

redundancies are included in the memory, allowing mapping of

faulty rows and columns to these redundancies. The process of

mapping faulty lines to redundancies is called Redundancy

Analysis. Redundancy Analysis is an NP-complete problem. In this

paper, we propose a memory repair solution based on the Genetic

Algorithm to repair the memory efficiently without compromising

on the yield compared to that of the existing heuristic algorithms.

Performance comparison to the best heuristic and an exhaustive

search algorithm gave a promising result with an average repair

rate improvement of 6.48% and theoretical run time improvement

of 33 times respectively. Genetic Algorithm can be used directly in

the production line to improve the wafer yield. A compound

algorithm was also developed in which the population

initialization was done with the solution of a heuristic algorithm

with a yield improvement of 0.5% over the genetic algorithm with

random initialization.

Keywords—redundancy analysis algorithm, NP-complete,

evolutionary algorithms, genetic algorithm.

I. INTRODUCTION

Moore’s Law states that the number of transistors in dense
integrated circuit doubles every two years. This law also applies
to increase in densities of memory, which results in an increase
in the defect probability in the memory. This reduces the yield
of the wafer on which the memory is manufactured. To
compensate for this decrease in yield, manufacturers include
redundancies in the form of spare rows and columns in memory
chips so that these chips can be repaired. These spare rows and
columns are mapped to faulty lines. When these faulty line
addresses are requested, the mapped spare lines are accessed
internally. This process of mapping spares to faulty lines is
called Redundancy Analysis (RA). The chip can be used only if
all the faults in the memory are repaired, otherwise the chip is
discarded. Hence, the development of an efficient RA algorithm
is crucial in the semiconductor industry. Achieving a very high
wafer yield, while also having a feasible runtime is challenging.

The complete repair process of RA is illustrated in Fig. 1 on
an 8x16 chip containing 5 faults. 1 spare row and 2 spare
columns are available for allocation, using which the chip has to
be repaired. The spare row is mapped to the 5th row thereby
repairing 2 faults. The 2 spare columns are mapped to the 2nd
and 14th columns. All the faults in the chip are repaired and
hence this allocation of spares is a solution to the problem. In
this case, there is only 1 way to repair the chip. In general,
multiple solutions to repair the chip exist. Also, some chips are
unrepairable. The main aim of RA is to repair a high number
defective chips within a feasible runtime.

Spare Row

S
p

ar
e

C
o

lu
m

n
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Fig. 1: Chip repair process of 5 faults using redundancies

Different RA algorithms have been proposed in literature.
Since, RA is an NP-complete problem [1], only exponential
algorithms will provide the highest possible yield. These
algorithms are associated with complete search and are able to
repair all the chips that are theoretically repairable. However,
with an increase in the number of faults and chip size, the time
required to repair the chips increases exponentially making them
impractical to be used in the manufacturing line. On the other
hand, there are various heuristic algorithms which perform in
polynomial time with lower repair rates. Genetic algorithm [2]
(GA) in [3], is shown as a possible RA algorithm. GA has a time
complexity independent of the number of faults, for a chip size.

The summary of our contributions is as follows:
• We detail our implementation of the Genetic Algorithm as

an RA algorithm
• We introduce a different population initialization for RA
• We show the theoretical scalability of our algorithm to chips

of bigger sizes

In Section II, description about the existing RA algorithms
and the must repair condition has been provided. The simple
Genetic Algorithm has also been described, to make it easier to
understand the implementation described in Section III. The
experimental setup and results have been described in Section
IV, followed by future work and conclusion in Section V.

II. BACKGROUND

A. Redundancy Analysis Algorithms

An efficient RA algorithm maintains a high repair rate and
completes the repair in a reasonable time. Many heuristic and
exhaustive RA algorithms are discussed in literature. For
exhaustive RA algorithms, a full decision tree can be built by
considering for each fault, all possible cases and finding a repair
solution whenever it exists. The algorithm will have an
exponential worst case time complexity in order of O(2n), where
n is number of faults. In [4], Faulty Line Covering algorithm
which is an improvement over Fault-Driven Comprehensive
algorithm [5] is proposed.

Using heuristic algorithms will produce a solution quickly
but will sacrifice on the repair rate. The broadside algorithm [6]
is one such heuristic algorithm which uses a greedy approach to
repair the chip. It assigns spare rows or columns based on
whichever is available in a greater quantity at that point in repair.
LECA [4] uses Effective Coefficients to find a repair order. OSP
[7] defines pivot, intersection and one side pivot faults to repair
the chip.

Before applying any repair algorithm, must repair analysis
[1] is generally done to reduce search space. If there are more
faulty cells in a row than available spare columns, the faulty row
must be repaired by a spare row. Similar condition holds for
faulty columns to be in the must repair condition. In Fig. 2,
column 14 with faults {E1, E8} cannot be repaired by only 1
available spare row and hence a spare column must be used to
repair the column. Similarly, for row 5 with faults {E5, E6, E7},
a spare row must be used for repair since 3 faults in a row cannot
be repaired with 2 spare columns.

 1 Spare Row

2
 S

p
ar

e
C

o
lu

m
n

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

E1

E2 E3

E4

E5 E6 E7

E8

Fig. 2: Must repair with 1 spare row and 2 spare columns

B. Genetic Algorithm

Genetic Algorithm (GA) [2] is a heuristic evolutionary
algorithm used to solve optimization problems. GA involves
simulation of a population over several generations, where the
population represents a collection of individuals, with each
individual being a candidate solution to the problem. The initial
population is usually generated randomly. The number of
individuals in a generation is the population size. A fitness
function is an objective function that defines how close the
individual is to the final solution. Fitter individuals have a better
chance to yield good solutions to the problem.

The fitter individuals take part in selection process and
participate in crossover. Hence, these candidates survive by
creating new offspring. Crossover is a process of recombining
selected individuals to produce a new generation of individuals.
A crossover can be performed by using different strategies such
as N-point crossover, genes are taken alternatively between
crossover points. Uniform crossover is carried out by choosing
gene from parent using fitness probability. New generation
individual can undergo mutation process which adds unique
characteristics to individuals by randomly altering them. This
process increases the search space and thus allows the solution
to come out of local optima. A fixed percent of the fittest
individuals are selected as elite and are given a chance to
survive. These elite individuals pass to the next generation
without undergoing any mutation. This ensures good solutions
are not lost in the process of creating new generations.

 In Section III, the implementation details of individuals,
population initialization, fitness function, selection, crossover
mutation, and reserving elites process of Genetic algorithm for
Redundancy Analysis is explained.

III. IMPLEMENTATION

To solve the Redundancy Analysis (RA) problem using
Genetic Algorithm (GA), an individual composed of 2
chromosomes is defined. The GA initializes the first generation
of individuals and then uses these individuals to calculate
fitness, and performs crossover and mutation to get a new
generation of individuals. This process is carried out for a fixed
number of generations.

The first step is the initialization of population where a group
of individuals are defined. Fig. 3 shows 4 individuals i1, i2, i3 and
i4. Multiple ways of initialization have been discussed in the
paper. In the second step, the fitness of these initialized
individuals is calculated. The fitness values of the individuals
are calculated based on the fitness function which is discussed
subsequently. In this example, individual i1 has the highest
fitness value and i3 has the lowest. Based on the fitness, the
selection of individuals into parent classes, p1 and p2, is
performed, which will then undergo crossover. A roulette-wheel
selection method is discussed in the paper.

The selection is followed by reservation of elites [8], where
the fittest individuals are carried to the next generation without
any changes. This is followed by the crossover and mutation
steps which give a new generation of the population. In this
example, individual i1 has been reserved as an elite.

i1

R:

C:

1 0 0 1

0 1 0 0

i2

R:

C:

0 1 0 1

0 0 1 0

i3

R:

C:

0 0 1 0

0 1 0 1

i4

R:

C:

0 1 1 0

1 0 0 0

High LowFitness Value Legend:

i1

R:
C:

1 0 0 1

0 1 0 0

i2

R:
C:

0 1 0 1

0 0 1 0

i3

R:
C:

0 0 1 0

0 1 0 1

i4

R:
C:

0 1 1 0

1 0 0 0

Initialize the

population

Calculate fitness

Selection

Reserve Elites

Crossover

Mutation

F
o

r
A

ll
 G

e
n

e
ra

ti
o

n
s

p1

i3

R:

C:

0 0 1 0

0 1 0 1

i1

R:

C:

1 0 0 1

0 1 0 0

p2

i4

R:

C:

0 1 1 0

1 0 0 0

i2

R:

C:

0 1 0 1

0 0 1 0

c2

R:

C:

0 0 1 1

0 0 1 0

c3

R:

C:

1 0 0 0

0 0 0 0

c4

R:

C:

1 0 0 1

0 0 1 0

c2

R:
C:

0 0 1 0

0 0 1 0

c3

R:
C:

1 0 0 0

0 0 1 0

c4

R:
C:

1 0 0 1

0 0 0 0

c1

R:

C:

1 0 0 1

0 1 0 0

i3

R:

C:

0 0 1 0

0 1 0 1

i1

R:

C:

1 0 0 1

0 1 0 0

i4

R:

C:

0 1 1 0

1 0 0 0

i2

R:

C:

0 1 0 1

0 0 1 0

Elite

c1

R:

C:

1 0 0 1

0 1 0 0

Fig. 3: Flow diagram of Genetic Algorithm implementation

Single-point crossover of parents has been illustrated in Fig.
3, where the row crossover has been performed with three genes
of parent p1 and one gene of parent p2. Similarly for columns,
crossover has been performed with one gene of parent p1 and
three genes of parent p2. It is followed by mutation, where in this
example, at max one row or column gene has been mutated from
each individual, randomly. The genes marked in orange are the
ones that have undergone mutation in children c2 and c4. Each
of these steps have been explained in detail in individual
subsections in this section.

A. Individual

An individual is the smallest representation of a solution for
the Redundancy Analysis (RA) problem. As illustrated in Fig. 4,
an individual consists of 2 chromosomes and a fitness value. The
two chromosomes represent the spare row and column
allocation in defective chips.

+ rowRepair: vector <bool>

+ colRepair: vector <bool>

+ fitness: int

individual

0 0 1 0 0 0 1 0

0 1 0 0

1021

Fig. 4: Implementation of an individual

As illustrated in Fig. 5, bit strings are used to represent row
and column chromosomes, where the gene value of 1 represents
the allocation of spare. An 8x4 chip with one spare row and two
spare columns has been used as an example. All the faults except
E4 at (2, 5) have been repaired. Here the row and column
chromosomes are “0100” and “00100010” respectively
indicating repairs at row 1 and columns 2 and 6.

E1

E2

E3 E4

SC0 SC1

SR0

0 0 1 0 0 0 1 0

0

1

0

0

Spare Row

S
p

a
re

 C
o

lu
m

n
s

0 1 2 3 4 5 6 7

0

1

2

3

Spare Column Allocation

Spare

Row

Allocation

Fig. 5: Bit strings as chromosomes for memory repair

B. Population Initialization

The population initialization for the RA problem is not
completely random unlike other problems which are solved
using Genetic Algorithm. The first step of the initialization is the
Must-Repair condition explained in Section II. This vastly
reduces the number of generations required to arrive to a
solution by simplifying the problem. This is followed by a
probability based initialization of the first generation of
individuals. This initialization method can be improved by using
solutions of a fast heuristic algorithm to initialize an individual
or a part of the population.

The initialization uses probability values to determine if a
spare will be assigned or not. PSx can be the probability of
allocation of a spare row PSr or a column PSc and is defined as:

��� = ���� +
� ×
�
�� ×
�_��� , �ℎ���

� ∈ ��, ��,
�� >
� ��� ���� +
�
��⁄ ≤ 1

(1)

where PSr can be calculated using Pmin: minimum probability
of assigning a spare to a faulty row, Fr: number of faults in that
row, Fr_max: maximum number of faults in any row, and Mf and
Mmf: the fault multipliers. So, if a PSr value between 0.4 and 0.6
is desired, the Pmin would be 0.4, and the Mf and Mmf values can
be 1 and 5, so the second term on the R.H.S of (1) has a
probability range [0, 0.2] restricting the range of PSr in [0.4, 0.6].
Similar calculations are carried out for PSc.

C. Fitness function

The fitness function determines the ability of an individual
to perform a quality repair. The fitness function is divided into
3 parts for calculations, which are based on linear fault solving
score, multi-repair reward and repair penalization. The fitness
function was initially implemented only with the linear fault
solving but it was then improved by adding multi-repair reward
and repair penalization to the function.

Linear Fault Solving Score: The linear fault solving score of
an individual depends on the number of faults that have been
solved and the number of spares that have been used. The linear
fault solving function, returns a higher value if the number of
faults solved are more and the number of spares used are less.
The linear fault solving fitness (flfs) is defined as: !"�# = $ ∙ !�&'(#)"*+, − . ∙ �/0 − 1 ∙ �/2 (2)

Where α, β and γ are the positive multiplication constants to
change the weight given to the different factors, faultsolved is the
number of faults solved by the individual, and nsr and nsc are the
number of spare rows and columns used by the individual
respectively. 2 individuals with different solutions using the
same number of spares is illustrated in Fig. 6. The individual in
Fig. 6 (b) has a higher flfs value as it has repaired 3 faults in the
chip as compared to 2 faults repaired by 6 (a). Since 6 (b) has a
higher fitness value, it will have a better chance of producing an
individual which is able to repair all the faults present in the chip.

E1

E2

E3 E4

SC0 SC1

SR0

Spare Row

S
p

a
re

 C
o

lu
m

n
s E1

E2

E3 E4

SC0 SC1

SR0

Spare Row

S
p

a
re

 C
o

lu
m

n
s

(a) (b)

Fig. 6: Linear Fault Solving example

Multi-Repair Reward: An individual is awarded with a
multi-repair reward if it is able to find solutions repairing
multiple faults with a single spare row or column. The repair
threshold is decided beforehand. If the number of faults repaired
exceeds that threshold, a multi-repair reward directly
proportional to the number of faults is awarded to the individual
based on the following equation:

!�00 = 3 ∙ 430 5 !��∈�67� ∙ 84!� 9 !(0: + 32 5 !;;∈�6<� ∙ 84!; 9 !(2: (3)

Where δ is the overall multiplication factor of the multi-
repair reward, δr and δc are the multiplication constants for row
and column multi-repair respectively. Rr is the set of row repairs
performed by the individual whereas Rc is the set of column
repairs. 1 is the indicator function. In Fig. 7, the number of faults
repaired by a spare row is checked for the reward. In this case,
rows 0 and 5 are checked. Assuming that the fault threshold for
row, ftr = 3. For row 0, f0 < ftr, so the individual is not rewarded
for that, but for row 5, f5 ≥ ftr, thus it’ll be rewarded proportional
to f5 which is 3ꞏ δr. Similarly in the case of columns, assuming
the fault threshold for column, ftc = 3, the individual will be
rewarded for repairing columns 10 and 14 because f10 >= ftc and
f14 >= ftc but not for column 2 since f2 < ftc.

2 Spare Rows

3
 S

p
a

re
 C

o
lu

m
n

s

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 7: Multi-repair Reward example and Repair penalization example

Repair penalization: When faults are shared between rows
and columns, it is possible for the same fault to be repaired with
both a spare row and a column. For example in Fig. 7, the fault
at (0, 10) has been repaired with both a spare row and a column.
In case an individual decides to repair row 0 first and not repair
column 10 with a spare column, it should be penalized as the
fault at (0, 10) is more suited to a column repair. That is why,
we penalize an individual if a lot of faults are repaired both by
both a spare row and a spare column. The penalty is proportional
to the number of such faults.

This penalization (frp) is based on the following formula:

!0= = > × ? 5 5 !;;∈��<,�7��∈�67,6<� , !; 9 !@
0, !; B !@ (4)

Where λ is the repair penalization multiplier, and for all the
rows and columns that have been repaired (i ∈ {Rr , Rc}), all the
faults are iterated over (j ∈ {ic , ir}), and the fault count, fj of that
row or column is the penalty for repair of that fault. If fj exceeds
the fault threshold ft, only then the individual is penalized. For
example in Fig. 7, if row 0 is repaired, since the fault (0, 8) is the
lone fault in column 8, it is not penalized but fault (0, 10) has 3
more faults in column 10. Assuming this crosses the fault
threshold value, it will be penalized by 4ꞏ λ points as the column
count for column 10 is 4. In case of columns, Table I shows the
penalization of different columns that have been repaired in Fig.
7. Here the assumed fault threshold value, ft is 2 and λ is 1.

TABLE I. COLUMN REPAIR PENALIZATION EXAMPLE

Col Count Faults (x, y) and fj for (x, y) frp

2
1 (3, 2) - - -

2
i=2, fj 2 - - -

10
4 (0, 10) (2, 10) (3, 10) (7, 10)

4
i=10, fj 2 0 2 0

14
3 (1, 14) (4, 14) (6, 14) -

0
i=14, fj 0 0 0 -

The fitness function is then calculated using (2), (3) and (4)
with the help of the following equation:

fitness = I−1 × J, �#0 > K#0 L� �#2 > K#2J + !"�# + !�00 − !0=, �'/� (5)

where k is a constant used to mark illegal solutions using
more spare rows and columns than available. So, in case of a
legal solution, fitness is the sum of k, linear fault solving score
and the multi-repair reward, with the repair penalization
subtracted from it.

Hypothesis 1. The proposed fitness function differentiates
between solutions of a common complex case in DRAM chips.

Assumptions.
1. |SR| = nR

- if |SR| < nR, not solvable if any(nRei) > |SC|)
- if |SR| > nR, easily solvable

2. nCtotal ≤ |SC|, if |SC| > nCtotal, not solvable
3. nC >= |SC|, if nC < |SC|, solvable
4. nCtotal < ftr < nR
5. nC < ftc

where |SR| and |SC| are the number of spare rows and
columns allocated, nR and nC are the number of shared rows and
columns. nRC equals nR . nC, and ftr and ftc are the row and column
fault thresholds. |F| is the number of faults in the chip.

Fig. 8: General Case of DRAM Chip

Proof. We consider a common case and show that the fitness
function will accurately differentiate the two solutions.

Fitness function calculation for Fig. 8(A):

!"�# = $. N|
| − P 5 �Q+;
�RSTSUV

;WX + �6Q − |YZ|[− .. |Y\| − 1. |YZ|]

!�00 = 36 . P|Y\| . �6Q + 5 �6+�
|�6|
�WX [+ 32 . 0

!0= = > . 4|YZ| . |Y\|:

Fitness function calculation for Figure 8(B), !"�# = $. |
| − . . |Y\| − 1 . �Q@)@�"
!�00 = 36 . P|Y\| . �6Q + 5 �6+�

|�6|
�WX [+ 3Q . ^ , �ℎ���

^ _ N0, P�Q@)@�" . |Y\| + 5 �Q+;
�RSTSUV

;WX []

!0= = > . 4�Q@)@�" . |Y\|:

Taking the difference, we get,

!"�#`ab = $. N|
| − |
| + P 5 �2+;
�RSTSUV

;WX + �6Q − |YZ|[]
− 1 . 4�Q@)@�" − |YZ|: > 0

!�00̀ ab = 36 . 4�6+X: + 32 . P�Q@)@�" . |Y\| + 5 �Q+;
�RSTSUV

;WX [> 0

!0=`ab = > . |Y\| . 4�Q@)@�" − |Y\|: B 0 ∴
d(��//e −
d(��//f = !"�#`ab + !�00̀ ab − !0=`ab > 0 ∴
d(��//e >
d(��//f

D. Selection

A roulette-wheel selection [9] is followed where k
individuals are chosen to be included in the set p1 and another k
individuals in p2. The selection process starts by sorting the
individuals based on their fitness values. This is followed by
rank based selection as shown in Fig. 9, where individuals with
a higher rank have a higher probability of selection. In the
example, with population size p = 8, the individual with the first
rank has a probability of selection equal to 2/9 and the individual
with rank 8 has a probability of selection equal to 1/36. This
probability for rank r is calculated by the following equation: g4�: = 2 × 4g − � + 1: 4g × 4g + 1::⁄

After this, the probabilities are assigned and individuals are
selected into sets p1 and p2 for crossover.

Sort

Individuals

by Fitness

values

Assign Rank

based

selection

probability

26 65 34 23 29 11 58 77
i0 i1 i2 i3 i4 i5 i6 i7

11 23 26 29 34 58 65 77
i5 i3 i0 i4 i2 i6 i1 i7

Fig. 9: Selection process in Genetic Algorithm. The values in the boxes represent
the fitness value of the individuals

E. Crossover

Single-point crossover is implemented for individuals
selected into the 2 sets p1 and p2 in the previous step. The
crossover point is independently selected for both row and
column bit strings. In Fig. 10, two individuals, Individual 1 and
2 are crossed over. Each of the individuals has 2 chromosomes,
one for spare row and the other for spare column allocation.
These chromosomes are crossed over independently using a
crossover point of 3rd and 1st gene respectively. These crossed
over genes are passed to the intermediate individuals 1-2 and 2-
1 which will go for mutation in the next step.

Individual 2-1Individual 1-2

0 0 1 0 1 0 1 0 0 1 0 01 0 0 0 1 0 0 0 1 0 0 1

0 0 10 1 0 1 0 01 0 01 0 0 0 1 0 0 0 1 0 0 1

0 1 0 1 0

1 0 0

1 0 0

1

0 0 1

0

0 1 0 0 0

0 0 1

Individual 2Individual 1

0 0 1 0 1 0 1 0

0 1 0 0

1 0 0 0 1 0 0 0

1 0 0 1

Fig. 10: Crossover example with 2 individuals

F. Mutation

The mutation operation [2] consists of flipping the value at a
particular bit position with a probability p. Mutation probability
p is kept slightly higher to increase the search space. This helps
in avoiding getting stuck in local optimum. Mutation is carried
out in 2 steps for each chromosome. Initially, the genes with
value of 1 in the chromosome are mutated to zeros
independently with a probability of p10. Then the spare count is
updated as some extra spares will become available. Then,
mutation is done from zeros to ones with a probability of p01, till
spares are remaining or the mutation process is over.

Mutation 1->0

with

probability p10

Mutation 0->1

with

probability p01

Update

Spare

Count

Spares

Left?

0

1

0

1

0

1

Start End

0

C
h

ro
m

o
so

m
e

Spares

Left

0

0

0

1

0

0

0

p10

p10

p10

0

0

0

1

0

0

2

0

0

0

1

0

0

2 > 0, Yes

0

1

0

1

1

0

2

p01

p01

p01

p01

p01 0

1

0

1

1

0

0

Fig. 11: Mutation for an individual

 In Fig. 11, a 6 bit chromosome with 3 spares is illustrated.
First, 1 to 0 mutations occur with a probability of p10 which
mutates 2 out of 3 1s to 0s in the chromosome. Then the spare
count is updated to 2 allowing 0 to 1 mutations. We see 2 out of
5 possible 0 to 1 mutations giving us the final chromosome.

G. Reserving elites

As an additional step, to ensure that the best individual of the
current generation is not worse than the previous generations, a
subset of the current population called elites is guaranteed a
place in the next generation [8]. Elites are selected by sorting the
individuals based on their fitness values and picking the top n
individuals with the highest fitness.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Execution Time Comparison

Fig. 12 illustrates the theoretical comparison of number of
instructions required by FLCA and our Genetic Algorithm in 109
instructions. The Genetic Algorithm starts to require lesser
instructions than FLCA at 210, 228 and 250 number of faults for
2, 4 and 16 Gb DRAM chips respectively.

Fig. 12: Theoretical comparison of FLCA and Genetic algorithm

B. Repair rate

We compare the performance of the Genetic Algorithm (GA)
with other algorithms in Fig. 13, on 1.3×107 simulated chips of
size 64×64 with 8 spare rows and columns. With an increase in
fault rates, we observed a sharp decrease in the existing heuristic
algorithm yield after a fault rate of ~1.1%. However, the Genetic
Algorithm’s yield was within 2% of the exponential algorithm
FLCA. Thus, GA was able to maintain a very high repair rate of
98.2% even at high chip fault rates of ~1.6%. GA solves 1.97%
unique chips compared to the existing heuristic algorithms.

Fig. 13: Yield comparison of GA with existing RA algorithms

The parameters used for the GA are shown in Table II.

TABLE II. PARAMETERS USED FOR THE GENETIC ALGORITHM

Parameter Explanation Value
Generations #iterations of the GA 1000
Population #individuals in a generation 300

Elites #elites reserved per generation 10
Pmin, Mf, Mmf constant, fault multiplier in (1) 0.6, 1, 5

p10, p01 1-0 and 0-1 mutation probability 0.1, 0.2
α, β, γ constant used in (2) 20, 10, 10
δ, λ multiplier used in (3) and (4) 1, 1
ftr, ftc row, column threshold in (3) 3, 3

ft fault threshold used in (4) 3
k constant used in (5) 1000

C. Population Fitness of Genetic Algorithm

Fig. 14 illustrates the population quality of the Genetic
Algorithm over the generations. Each strip represents a single
generation. The color gradient of the general population varies
between red and green, with green being the best fitness value

for all individuals in all generations and red, the worst. Black
represents an invalid solution when more spares are used than
available. Blue denotes individuals that have repaired the chip
completely. Over the generations, a quality improvement can be
seen as the invalid and the inferior solutions i.e., orange, red and
black, are decreasing and the superior solutions i.e., green and
blue, are increasing.

Fig. 14: Population quality of subsequent Generations

D. Reserving Elites and Compound Initialization

Reserving the elites improved the yield of our genetic
algorithm by 2%. Additionally, initializing a small part of the
initial population with the solution of the Broadside algorithm
and its mutations further improved the yield by 0.5%. Since the
Broadside algorithm has a very low runtime, it is feasible to use
it to initialize part of the initial population.

V. FUTURE SCOPE AND CONCLUSION

Each individual in a generation is independent of the other,
so the algorithm is also being implemented using parallel
programming in CUDA to bring down the execution time.
Without the use of exponential algorithms, it is difficult to
achieve a 100% normalized repair rate. The experiments have
shown promising results when the Genetic Algorithm is used
even at high fault rates. With decreasing node sizes and
increasing densities in upcoming DRAM technologies like
DDR5 and LPDDR5, the FLCA algorithm will not be able to
repair the chips after a certain number of faults because of its
exponential time complexity. Thus, the Genetic Algorithm is a
potential candidate to be used in Redundancy Analysis.

REFERENCES

[1] S. K. Cho, K. Wooheon, C. Hyungjun, et al., “A Survey of Repair
Analysis Algorithms for Memories”, ACM Computer Survey, 2016.

[2] John H. Holland, “Adaptation in Natural and Artificial Systems”. Ann
Arbor, MI: University of Michigan Press, 1975.

[3] J. Milbourn, "Strategies for Optimising DRAM Repair," Durham theses,
Durham University, 2010.

[4] F. Lombardi, et al., "Approaches for the repair of VLSI/WSI RRAMs by
row/column deletion," ICFTCS, 1988, pp. 342-347

[5] J. R. Day, “A fault-driven comprehensive redundancy algorithm,” IEEE
Design & Test, pp. 35–44, Jun. 1985.

[6] M. Tarr, et al., “Defect Analysis System Speeds Test and Repair of
Redundant Memories.” Electronics. pp. 175-179. 1984.

[7] J. Kim, et al., "A new redundancy analysis algorithm using one side
pivot," International SoC Design Conference, pp. 134-135, Jeju, 2014.

[8] E. Zitzler, et al., “Comparison of multiobjective evolutionary algorithms:
Empirical results”. Evolutionary Computation, 8 (in press).

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning, 1st ed. Addison-Wesley, 1989

