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Abstract—During the manufacturing of a DRAM chip, 

external impurities, faulty deposition steps, or manufacturing 

errors could generate chips with faulty memory cells rendering the 

chip unusable. To overcome these faulty memory cells, 

redundancies are included in the memory, allowing mapping of 

faulty rows and columns to these redundancies. The process of 

mapping faulty lines to redundancies is called Redundancy 

Analysis. Redundancy Analysis is an NP-complete problem. In this 

paper, we propose a memory repair solution based on the Genetic 

Algorithm to repair the memory efficiently without compromising 

on the yield compared to that of the existing heuristic algorithms. 

Performance comparison to the best heuristic and an exhaustive 

search algorithm gave a promising result with an average repair 

rate improvement of 6.48% and theoretical run time improvement 

of 33 times respectively. Genetic Algorithm can be used directly in 

the production line to improve the wafer yield. A compound 

algorithm was also developed in which the population 

initialization was done with the solution of a heuristic algorithm 

with a yield improvement of 0.5% over the genetic algorithm with 

random initialization. 

Keywords—redundancy analysis algorithm, NP-complete, 

evolutionary algorithms, genetic algorithm. 

I. INTRODUCTION 

Moore’s Law states that the number of transistors in dense 
integrated circuit doubles every two years. This law also applies 
to increase in densities of memory, which results in an increase 
in the defect probability in the memory. This reduces the yield 
of the wafer on which the memory is manufactured. To 
compensate for this decrease in yield, manufacturers include 
redundancies in the form of spare rows and columns in memory 
chips so that these chips can be repaired. These spare rows and 
columns are mapped to faulty lines. When these faulty line 
addresses are requested, the mapped spare lines are accessed 
internally. This process of mapping spares to faulty lines is 
called Redundancy Analysis (RA). The chip can be used only if 
all the faults in the memory are repaired, otherwise the chip is 
discarded. Hence, the development of an efficient RA algorithm 
is crucial in the semiconductor industry. Achieving a very high 
wafer yield, while also having a feasible runtime is challenging. 

The complete repair process of RA is illustrated in Fig. 1 on 
an 8x16 chip containing 5 faults. 1 spare row and 2 spare 
columns are available for allocation, using which the chip has to 
be repaired. The spare row is mapped to the 5th row thereby 
repairing 2 faults. The 2 spare columns are mapped to the 2nd 
and 14th columns. All the faults in the chip are repaired and 
hence this allocation of spares is a solution to the problem. In 
this case, there is only 1 way to repair the chip. In general, 
multiple solutions to repair the chip exist. Also, some chips are 
unrepairable. The main aim of RA is to repair a high number 
defective chips within a feasible runtime. 
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Fig. 1: Chip repair process of 5 faults using redundancies 

Different RA algorithms have been proposed in literature. 
Since, RA is an NP-complete problem [1], only exponential 
algorithms will provide the highest possible yield. These 
algorithms are associated with complete search and are able to 
repair all the chips that are theoretically repairable. However, 
with an increase in the number of faults and chip size, the time 
required to repair the chips increases exponentially making them 
impractical to be used in the manufacturing line. On the other 
hand, there are various heuristic algorithms which perform in 
polynomial time with lower repair rates. Genetic algorithm [2] 
(GA) in [3], is shown as a possible RA algorithm. GA has a time 
complexity independent of the number of faults, for a chip size. 

The summary of our contributions is as follows: 
• We detail our implementation of the Genetic Algorithm as 

an RA algorithm 
• We introduce a different population initialization for RA 
• We show the theoretical scalability of our algorithm to chips 

of bigger sizes 

In Section II, description about the existing RA algorithms 
and the must repair condition has been provided. The simple 
Genetic Algorithm has also been described, to make it easier to 
understand the implementation described in Section III. The 
experimental setup and results have been described in Section 
IV, followed by future work and conclusion in Section V. 

II. BACKGROUND 

A. Redundancy Analysis Algorithms 

An efficient RA algorithm maintains a high repair rate and 
completes the repair in a reasonable time. Many heuristic and 
exhaustive RA algorithms are discussed in literature. For 
exhaustive RA algorithms, a full decision tree can be built by 
considering for each fault, all possible cases and finding a repair 
solution whenever it exists. The algorithm will have an 
exponential worst case time complexity in order of O(2n), where 
n is number of faults. In [4], Faulty Line Covering algorithm 
which is an improvement over Fault-Driven Comprehensive 
algorithm [5] is proposed. 



Using heuristic algorithms will produce a solution quickly 
but will sacrifice on the repair rate. The broadside algorithm [6] 
is one such heuristic algorithm which uses a greedy approach to 
repair the chip. It assigns spare rows or columns based on 
whichever is available in a greater quantity at that point in repair. 
LECA [4] uses Effective Coefficients to find a repair order. OSP 
[7] defines pivot, intersection and one side pivot faults to repair 
the chip. 

Before applying any repair algorithm, must repair analysis 
[1] is generally done to reduce search space. If there are more 
faulty cells in a row than available spare columns, the faulty row 
must be repaired by a spare row. Similar condition holds for 
faulty columns to be in the must repair condition. In Fig. 2, 
column 14 with faults {E1, E8} cannot be repaired by only 1 
available spare row and hence a spare column must be used to 
repair the column. Similarly, for row 5 with faults {E5, E6, E7}, 
a spare row must be used for repair since 3 faults in a row cannot 
be repaired with 2 spare columns. 
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Fig. 2: Must repair with 1 spare row and 2 spare columns 

B. Genetic Algorithm 

Genetic Algorithm (GA) [2] is a heuristic evolutionary 
algorithm used to solve optimization problems. GA involves 
simulation of a population over several generations, where the 
population represents a collection of individuals, with each 
individual being a candidate solution to the problem. The initial 
population is usually generated randomly. The number of 
individuals in a generation is the population size. A fitness 
function is an objective function that defines how close the 
individual is to the final solution. Fitter individuals have a better 
chance to yield good solutions to the problem. 

The fitter individuals take part in selection process and 
participate in crossover. Hence, these candidates survive by 
creating new offspring. Crossover is a process of recombining 
selected individuals to produce a new generation of individuals. 
A crossover can be performed by using different strategies such 
as N-point crossover, genes are taken alternatively between 
crossover points. Uniform crossover is carried out by choosing 
gene from parent using fitness probability. New generation 
individual can undergo mutation process which adds unique 
characteristics to individuals by randomly altering them. This 
process increases the search space and thus allows the solution 
to come out of local optima. A fixed percent of the fittest 
individuals are selected as elite and are given a chance to 
survive. These elite individuals pass to the next generation 
without undergoing any mutation. This ensures good solutions 
are not lost in the process of creating new generations.  

 In Section III, the implementation details of individuals, 
population initialization, fitness function, selection, crossover 
mutation, and reserving elites process of Genetic algorithm for 
Redundancy Analysis is explained. 

III. IMPLEMENTATION 

To solve the Redundancy Analysis (RA) problem using 
Genetic Algorithm (GA), an individual composed of 2 
chromosomes is defined. The GA initializes the first generation 
of individuals and then uses these individuals to calculate 
fitness, and performs crossover and mutation to get a new 
generation of individuals. This process is carried out for a fixed 
number of generations.  

The first step is the initialization of population where a group 
of individuals are defined. Fig. 3 shows 4 individuals i1, i2, i3 and 
i4. Multiple ways of initialization have been discussed in the 
paper. In the second step, the fitness of these initialized 
individuals is calculated. The fitness values of the individuals 
are calculated based on the fitness function which is discussed 
subsequently. In this example, individual i1 has the highest 
fitness value and i3 has the lowest. Based on the fitness, the 
selection of individuals into parent classes, p1 and p2, is 
performed, which will then undergo crossover. A roulette-wheel 
selection method is discussed in the paper. 

The selection is followed by reservation of elites [8], where 
the fittest individuals are carried to the next generation without 
any changes. This is followed by the crossover and mutation 
steps which give a new generation of the population. In this 
example, individual i1 has been reserved as an elite.  
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Fig. 3: Flow diagram of Genetic Algorithm implementation 



Single-point crossover of parents has been illustrated in Fig. 
3, where the row crossover has been performed with three genes 
of parent p1 and one gene of parent p2. Similarly for columns, 
crossover has been performed with one gene of parent p1 and 
three genes of parent p2. It is followed by mutation, where in this 
example, at max one row or column gene has been mutated from 
each individual, randomly. The genes marked in orange are the 
ones that have undergone mutation in children c2 and c4. Each 
of these steps have been explained in detail in individual 
subsections in this section. 

A. Individual 

An individual is the smallest representation of a solution for 
the Redundancy Analysis (RA) problem. As illustrated in Fig. 4, 
an individual consists of 2 chromosomes and a fitness value. The 
two chromosomes represent the spare row and column 
allocation in defective chips. 

+ rowRepair: vector <bool>

+ colRepair: vector <bool>

+ fitness: int

individual

0 0 1 0 0 0 1 0

0 1 0 0

1021  

Fig. 4: Implementation of an individual 

As illustrated in Fig. 5, bit strings are used to represent row 
and column chromosomes, where the gene value of 1 represents 
the allocation of spare. An 8x4 chip with one spare row and two 
spare columns has been used as an example. All the faults except 
E4 at (2, 5) have been repaired. Here the row and column 
chromosomes are “0100” and “00100010” respectively 
indicating repairs at row 1 and columns 2 and 6. 
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Fig. 5: Bit strings as chromosomes for memory repair 

B. Population Initialization 

The population initialization for the RA problem is not 
completely random unlike other problems which are solved 
using Genetic Algorithm. The first step of the initialization is the 
Must-Repair condition explained in Section II. This vastly 
reduces the number of generations required to arrive to a 
solution by simplifying the problem. This is followed by a 
probability based initialization of the first generation of 
individuals. This initialization method can be improved by using 
solutions of a fast heuristic algorithm to initialize an individual 
or a part of the population. 

The initialization uses probability values to determine if a 
spare will be assigned or not. PSx can be the probability of 
allocation of a spare row PSr or a column PSc and is defined as:  

��� =  ���� + 
� × 
�
�� × 
�_���  , �ℎ��� 

� ∈ ��, ��,  
�� > 
� ��� ���� + 
� 
��⁄ ≤ 1 

(1)

where PSr can be calculated using Pmin: minimum probability 
of assigning a spare to a faulty row, Fr: number of faults in that 
row, Fr_max: maximum number of faults in any row, and Mf and 
Mmf: the fault multipliers. So, if a PSr value between 0.4 and 0.6 
is desired, the Pmin would be 0.4, and the Mf and Mmf values can 
be 1 and 5, so the second term on the R.H.S of (1) has a 
probability range [0, 0.2] restricting the range of PSr in [0.4, 0.6]. 
Similar calculations are carried out for PSc. 

C. Fitness function 

The fitness function determines the ability of an individual 
to perform a quality repair. The fitness function is divided into 
3 parts for calculations, which are based on linear fault solving 
score, multi-repair reward and repair penalization. The fitness 
function was initially implemented only with the linear fault 
solving but it was then improved by adding multi-repair reward 
and repair penalization to the function. 

Linear Fault Solving Score: The linear fault solving score of 
an individual depends on the number of faults that have been 
solved and the number of spares that have been used. The linear 
fault solving function, returns a higher value if the number of 
faults solved are more and the number of spares used are less. 
The linear fault solving fitness (flfs) is defined as:  !"�# =  $ ∙ !�&'(#)"*+, −  . ∙ �/0 −  1 ∙ �/2 (2)

Where α, β and γ are the positive multiplication constants to 
change the weight given to the different factors, faultsolved is  the 
number of faults solved by the individual, and nsr and nsc are the 
number of spare rows and columns used by the individual 
respectively. 2 individuals with different solutions using the 
same number of spares is illustrated in Fig. 6. The individual in 
Fig. 6 (b) has a higher flfs value as it has repaired 3 faults in the 
chip as compared to 2 faults repaired by 6 (a). Since 6 (b) has a 
higher fitness value, it will have a better chance of producing an 
individual which is able to repair all the faults present in the chip. 
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Fig. 6: Linear Fault Solving example 

Multi-Repair Reward: An individual is awarded with a 
multi-repair reward if it is able to find solutions repairing 
multiple faults with a single spare row or column. The repair 
threshold is decided beforehand. If the number of faults repaired 
exceeds that threshold, a multi-repair reward directly 
proportional to the number of faults is awarded to the individual 
based on the following equation:   



!�00 = 3 ∙ 430 5 !��∈�67� ∙ 84!� 9 !(0: +  32 5 !;;∈�6<� ∙ 84!; 9 !(2:  (3)

Where δ is the overall multiplication factor of the multi-
repair reward, δr and δc are the multiplication constants for row 
and column multi-repair respectively. Rr is the set of row repairs 
performed by the individual whereas Rc is the set of column 
repairs. 1 is the indicator function. In Fig. 7, the number of faults 
repaired by a spare row is checked for the reward. In this case, 
rows 0 and 5 are checked. Assuming that the fault threshold for 
row, ftr = 3. For row 0, f0 < ftr, so the individual is not rewarded 
for that, but for row 5, f5 ≥ ftr, thus it’ll be rewarded proportional 
to f5 which is 3ꞏ δr. Similarly in the case of columns, assuming 
the fault threshold for column, ftc = 3, the individual will be 
rewarded for repairing columns 10 and 14 because f10 >= ftc and 
f14 >= ftc but not for column 2 since f2 < ftc. 
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Fig. 7: Multi-repair Reward example and Repair penalization example 

Repair penalization: When faults are shared between rows 
and columns, it is possible for the same fault to be repaired with 
both a spare row and a column. For example in Fig. 7, the fault 
at (0, 10) has been repaired with both a spare row and a column. 
In case an individual decides to repair row 0 first and not repair 
column 10 with a spare column, it should be penalized as the 
fault at (0, 10) is more suited to a column repair. That is why, 
we penalize an individual if a lot of faults are repaired both by 
both a spare row and a spare column. The penalty is proportional 
to the number of such faults. 

This penalization (frp) is based on the following formula: 

!0= =  > ×  ? 5 5 !;;∈��<,�7��∈�67,6<� ,  !; 9 !@
0,  !; B !@      (4) 

Where λ is the repair penalization multiplier, and for all the 
rows and columns that have been repaired (i ∈ {Rr , Rc}), all the 
faults are iterated over (j ∈ {ic , ir}), and the fault count, fj of that 
row or column is the penalty for repair of that fault. If fj exceeds 
the fault threshold ft, only then the individual is penalized. For 
example in Fig. 7, if row 0 is repaired, since the fault (0, 8) is the 
lone fault in column 8, it is not penalized but fault (0, 10) has 3 
more faults in column 10. Assuming this crosses the fault 
threshold value, it will be penalized by 4ꞏ λ points as the column 
count for column 10 is 4. In case of columns, Table I shows the 
penalization of different columns that have been repaired in Fig. 
7. Here the assumed fault threshold value, ft is 2 and λ is 1. 

TABLE I. COLUMN REPAIR PENALIZATION EXAMPLE  

Col Count Faults (x, y) and fj for (x, y) frp 

2 
1 (3, 2) - - - 

2 
i=2, fj 2 - - - 

10 
4 (0, 10) (2, 10) (3, 10) (7, 10) 

4 
i=10, fj 2 0 2 0 

14 
3 (1, 14) (4, 14) (6, 14) - 

0 
i=14, fj 0 0 0 - 

The fitness function is then calculated using (2), (3) and (4) 
with the help of the following equation:    

fitness = I−1 ×  J, �#0 > K#0  L� �#2 > K#2J +  !"�#  +  !�00  −  !0=, �'/�    (5) 

where k is a constant used to mark illegal solutions using 
more spare rows and columns than available. So, in case of a 
legal solution, fitness is the sum of k, linear fault solving score 
and the multi-repair reward, with the repair penalization 
subtracted from it. 

Hypothesis 1. The proposed fitness function differentiates 
between solutions of a common complex case in DRAM chips. 

Assumptions. 
1. |SR| = nR 

- if |SR| < nR, not solvable if any(nRei) > |SC|) 
- if |SR| > nR, easily solvable 

2. nCtotal ≤ |SC|, if |SC| > nCtotal, not solvable 
3. nC >= |SC|, if nC < |SC|, solvable 
4. nCtotal < ftr < nR 
5. nC < ftc 

where |SR| and |SC| are the number of spare rows and 
columns allocated, nR and nC are the number of shared rows and 
columns. nRC equals nR . nC, and ftr and ftc are the row and column 
fault thresholds. |F| is the number of faults in the chip. 

 

Fig. 8: General Case of DRAM Chip 



Proof. We consider a common case and show that the fitness 
function will accurately differentiate the two solutions. 

Fitness function calculation for Fig. 8(A): 

!"�# =  $. N|
| − P 5 �Q+;
�RSTSUV

;WX + �6Q − |YZ|[ − .. |Y\| −  1. |YZ|] 

!�00 =  36 . P|Y\| . �6Q + 5 �6+�
|�6|
�WX [ + 32 . 0 

!0= =  > . 4|YZ| . |Y\|: 

Fitness function calculation for Figure 8(B), !"�# =  $ . |
| − . . |Y\| − 1 .  �Q@)@�" 
!�00 = 36  . P|Y\| . �6Q + 5 �6+�

|�6|
�WX [ + 3Q  . ^ , �ℎ��� 

^ _ N0, P�Q@)@�" . |Y\| +  5 �Q+;
�RSTSUV

;WX [] 

!0= =  > . 4�Q@)@�" . |Y\|: 

Taking the difference, we get, 

!"�#`ab =  $ . N|
| − |
| +  P 5 �2+;
�RSTSUV

;WX + �6Q − |YZ|[]  
−  1 . 4�Q@)@�" − |YZ|: >  0 

!�00̀ ab =  36 . 4�6+X: + 32  . P�Q@)@�" . |Y\| + 5 �Q+;
�RSTSUV

;WX [ > 0 

!0=`ab =  > . |Y\| . 4�Q@)@�" − |Y\|: B 0 ∴ 
d(��//e − 
d(��//f =  !"�#`ab + !�00̀ ab − !0=`ab > 0 ∴ 
d(��//e > 
d(��//f 

D. Selection 

A roulette-wheel selection [9] is followed where k 
individuals are chosen to be included in the set p1 and another k 
individuals in p2. The selection process starts by sorting the 
individuals based on their fitness values. This is followed by 
rank based selection as shown in Fig. 9, where individuals with 
a higher rank have a higher probability of selection. In the 
example, with population size p = 8, the individual with the first 
rank has a probability of selection equal to 2/9 and the individual 
with rank 8 has a probability of selection equal to 1/36. This 
probability for rank r is calculated by the following equation:  g4�: = 2 ×  4g − � + 1: 4g × 4g + 1::⁄     

After this, the probabilities are assigned and individuals are 
selected into sets p1 and p2 for crossover. 

Sort 
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Assign Rank 

based 

selection 
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26 65 34 23 29 11 58 77
i0 i1 i2 i3 i4 i5 i6 i7

11 23 26 29 34 58 65 77
i5 i3 i0 i4 i2 i6 i1 i7

 

Fig. 9: Selection process in Genetic Algorithm. The values in the boxes represent 
the fitness value of the individuals 

E. Crossover 

Single-point crossover is implemented for individuals 
selected into the 2 sets p1 and p2 in the previous step. The 
crossover point is independently selected for both row and 
column bit strings. In Fig. 10, two individuals, Individual 1 and 
2 are crossed over. Each of the individuals has 2 chromosomes, 
one for spare row and the other for spare column allocation. 
These chromosomes are crossed over independently using a 
crossover point of 3rd and 1st gene respectively. These crossed 
over genes are passed to the intermediate individuals 1-2 and 2-
1 which will go for mutation in the next step. 

Individual 2-1Individual 1-2

0 0 1 0 1 0 1 0 0 1 0 01 0 0 0 1 0 0 0 1 0 0 1

0 0 10 1 0 1 0 01 0 01 0 0 0 1 0 0 0 1 0 0 1

0 1 0 1 0

1 0 0

1 0 0

1

0 0 1

0

0 1 0 0 0

0 0 1

Individual 2Individual 1

0 0 1 0 1 0 1 0

0 1 0 0

1 0 0 0 1 0 0 0

1 0 0 1

 

Fig. 10: Crossover example with 2 individuals 

F. Mutation 

The mutation operation [2] consists of flipping the value at a 
particular bit position with a probability p. Mutation probability 
p is kept slightly higher to increase the search space. This helps 
in avoiding getting stuck in local optimum. Mutation is carried 
out in 2 steps for each chromosome. Initially, the genes with 
value of 1 in the chromosome are mutated to zeros 
independently with a probability of p10. Then the spare count is 
updated as some extra spares will become available. Then, 
mutation is done from zeros to ones with a probability of p01, till 
spares are remaining or the mutation process is over. 
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Fig. 11: Mutation for an individual 

 In Fig. 11, a 6 bit chromosome with 3 spares is illustrated. 
First, 1 to 0 mutations occur with a probability of p10 which 
mutates 2 out of 3 1s to 0s in the chromosome. Then the spare 
count is updated to 2 allowing 0 to 1 mutations. We see 2 out of 
5 possible 0 to 1 mutations giving us the final chromosome. 

G. Reserving elites 

As an additional step, to ensure that the best individual of the 
current generation is not worse than the previous generations, a 
subset of the current population called elites is guaranteed a 
place in the next generation [8]. Elites are selected by sorting the 
individuals based on their fitness values and picking the top n 
individuals with the highest fitness. 



IV. EXPERIMENTAL SETUP AND RESULTS 

A. Execution Time Comparison 

Fig. 12 illustrates the theoretical comparison of number of 
instructions required by FLCA and our Genetic Algorithm in 109 
instructions. The Genetic Algorithm starts to require lesser 
instructions than FLCA at 210, 228 and 250 number of faults for 
2, 4 and 16 Gb DRAM chips respectively. 

 
Fig. 12: Theoretical comparison of FLCA and Genetic algorithm 

B. Repair rate 

We compare the performance of the Genetic Algorithm (GA) 
with other algorithms in Fig. 13, on 1.3×107 simulated chips of 
size 64×64 with 8 spare rows and columns. With an increase in 
fault rates, we observed a sharp decrease in the existing heuristic 
algorithm yield after a fault rate of ~1.1%. However, the Genetic 
Algorithm’s yield was within 2% of the exponential algorithm 
FLCA. Thus, GA was able to maintain a very high repair rate of 
98.2% even at high chip fault rates of ~1.6%. GA solves 1.97% 
unique chips compared to the existing heuristic algorithms.  

 

Fig. 13: Yield comparison of GA with existing RA algorithms 

The parameters used for the GA are shown in Table II. 

TABLE II. PARAMETERS USED FOR THE GENETIC ALGORITHM  

Parameter Explanation Value 
Generations #iterations of the GA 1000 
Population #individuals in a generation 300 

Elites #elites reserved per generation 10 
Pmin, Mf, Mmf constant, fault multiplier in (1) 0.6, 1, 5 

p10, p01 1-0 and 0-1 mutation probability 0.1, 0.2 
α, β, γ constant used in (2) 20, 10, 10 
δ, λ multiplier used in (3) and (4) 1, 1 
ftr, ftc row, column threshold in (3) 3, 3 

ft fault threshold used in (4) 3 
k constant used in (5) 1000 

C. Population Fitness of Genetic Algorithm  

Fig. 14 illustrates the population quality of the Genetic 
Algorithm over the generations. Each strip represents a single 
generation. The color gradient of the general population varies 
between red and green, with green being the best fitness value 

for all individuals in all generations and red, the worst. Black 
represents an invalid solution when more spares are used than 
available. Blue denotes individuals that have repaired the chip 
completely. Over the generations, a quality improvement can be 
seen as the invalid and the inferior solutions i.e., orange, red and 
black, are decreasing and the superior solutions i.e., green and 
blue, are increasing. 

 
Fig. 14: Population quality of subsequent Generations 

D. Reserving Elites and Compound Initialization  

Reserving the elites improved the yield of our genetic 
algorithm by 2%. Additionally, initializing a small part of the 
initial population with the solution of the Broadside algorithm 
and its mutations further improved the yield by 0.5%. Since the 
Broadside algorithm has a very low runtime, it is feasible to use 
it to initialize part of the initial population. 

V.  FUTURE SCOPE AND CONCLUSION 

Each individual in a generation is independent of the other, 
so the algorithm is also being implemented using parallel 
programming in CUDA to bring down the execution time.  
Without the use of exponential algorithms, it is difficult to 
achieve a 100% normalized repair rate. The experiments have 
shown promising results when the Genetic Algorithm is used 
even at high fault rates. With decreasing node sizes and 
increasing densities in upcoming DRAM technologies like 
DDR5 and LPDDR5, the FLCA algorithm will not be able to 
repair the chips after a certain number of faults because of its 
exponential time complexity. Thus, the Genetic Algorithm is a 
potential candidate to be used in Redundancy Analysis. 
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