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Abstract—Manufacturing errors, external impurities or faulty 

deposition during chip fabrication could generate chips with faulty 

memory cells, rendering the chip unusable. To repair these faulty 

memory cells, redundancies are included in the memory in the 

form of spare rows and columns. The process of mapping faulty 

lines to redundant cells is Redundancy Analysis. Applying a 

uniform Redundancy Analysis algorithm on the wafers or running 

algorithms sequentially one after the other would either 

compromise on the repair time or wafer yield. An end-to-end 

solution for memory repair is proposed in this paper. A clustering 

algorithm to classify, identify and extract features from chip 

errors on a wafer is proposed. These features along with other 

derived parameters are used as an input to the neural network 

recommender system to select algorithms allowing an increase in 

the wafer yield keeping a low repair time per wafer. We have 

performed comparisons of the generated result with and without 

clustering and with other methods of classification of chips for 

Redundancy Analysis algorithm selection such as Decision Trees. 

Experimental results demonstrate that this solution out-performs 

the heuristic algorithmic solutions by 9.1% and 32.9% in terms of 

yield for medium and high error rates.  

Keywords— Deep Learning, Clustering, Memory Repair, 

DRAM, Redundancy Analysis 

I. INTRODUCTION 

Manufacturers have been able to keep up with the increasing 
semiconductor demands by producing chips in large quantities 
with higher densities on a single wafer. The increase in wafer 
density coupled with the decrease in node sizes have led to an 
increased probability of chip defects, which reduces the wafer 
yield. Beginning with 64Kbit DRAM chips, manufacturers have 
included redundancies (spare rows and columns) in the chips to 
repair them which improves the overall wafer yield. Using wafer 
tests during the Electrical Die sorting process (EDS), the defect 
addresses on each chip can be located. We use these addresses 
to perform Redundancy Analysis (RA), which is a process of 
allocating spare rows and columns to the defective addresses 
detected in the chip, as illustrated in Figure 1 where row 2 and 
columns 4 and 6 are repaired using the spares available.  

 

Fig. 1: Memory repair using redundant rows and columns 

RA is an NP-complete problem [1], so with an increasing 
number of chip errors, the time required to repair the chip with 
maximum possible yield increases exponentially. RA allows the 
repair of defective chips, but if the chip is unrepairable due to a 
large number of errors, it would be discarded. Different RA 
Algorithms like Broadside [2], LECA [3] and OSP [4] - having 
different wafer yield and time complexities - have been 
proposed, but the current methodology of using a single 
algorithm for all chips on the production line is not sufficient for 
maximum yield or minimum repair time. 

Since chips with similar failures are more likely to be 
repaired by similar algorithms, we propose a wafer-scale 
clustering module for classifying the chips on the basis of errors 
and wafer position, and a neural network based RA algorithm 
recommender module which would allow RA algorithm 
selection. To the best of the authors’ knowledge, the proposed 
methodology to identify chips with similar failures in the 
Backend of the Line (BEOL) and improve the repair efficiency 
is the first of its kind. The longer the wafer is kept in the BEOL, 
more are the chances of its contamination. Thus decreasing the 
production time will allow manufacturing of more wafers and 
decreasing the probability of contamination. 

The summary of our contributions is as follows. 
• A wafer-scale clustering module for classifying the chips on 

the basis of position on the wafer and number of errors. This 
would allow classification of chips exhibiting specific faults 
into a single cluster. 

• A neural network based Redundancy Analysis recommender 
module which would allow selection of an algorithm out of 
a suite of algorithms to analyze and improve the repair 
efficiency while decreasing the overall time taken to repair 
this memory. 

Different solutions can be provided in different conditions, 
given the solution exists. Quality of solution and time taken by 
each RA algorithm also depends on type of chip failure patterns. 
The proposed model takes these factors into account along with 
chip errors and provide the best algorithm recommendation. It 
also predicts if the chip should be discarded thus saving valuable 
time on the manufacturing line which can be utilized to repair 
other chips. 

The outline of the paper is as follows. In Section 2, we have 
discussed the existing RA algorithms along with the genetic 
algorithm. Section 3 describes the proposed model in detail. 
Finally, we have discussed the experimental results and 
conclusion in Sections 4 and 5 respectively. 



II. RELATED WORK 

A. Existing RA Algorithms 

There have been various contributions in the field of RA 
algorithms. These algorithms can be classified into two 
categories, exponential and heuristic algorithms. Exponential 
algorithms will repair all the repairable chips, but in general, 
are too slow to be used on the production lines. Heuristic 
algorithms, on the other hand, trade-off yield with a faster 
execution time. Exponential algorithms include Fault-driven 
[5] which builds a tree with all the possible repairs. Branch-and-
Bound [1] , PAGEB [1] and Faulty Line Covering algorithm [3] 
optimize the naive exponential algorithm, bringing down the 
overall time required to repair the chip without sacrificing the 
yield. FAST [6] groups the faults to further bring down the time 
complexity but it starts to sacrifice the yield. 

Repair-Most [2] and Broadside Algorithm [2] try to repair 
the chip greedily. LECA [3] uses Effective Coefficients to rank 
the rows and columns of a chip in the order in which they have 
to be repaired. The One Side Pivot (OSP) [4] uses Pivot fault 
properties to find repair priorities reducing the analysis time 
even when the error rate is high. RA algorithm for chip repair 
must be chosen carefully as they provide varying yield and time 
complexity. Genetic Algorithm (GA) [7] is an evolutionary 
algorithm used to solve optimization problems. In [8], GA has 
been proposed as a possible solution to RA. 

An ideal RA should find a repair solution whenever one 
exists. It should complete execution in a reasonable length of 
time and abort at the earliest sign of un-reparability. 

B. Learning Algorithms 

Neural Networks (NN) [9] are a set of learning algorithms 
which are capable of processing dynamic state of external 
inputs. Neural networks learn or train by using input data 
features to extract meaning, relations and patterns. Typically NN 
are arranged in layers and each layer passes extracted 
information to the next layer for further computation. The 
processing is done using weighted connections and based on 
learning rule these weights are modified. NN follows universal 
approximation theorem i.e. it can approximate arbitrarily well 
for any complex relation between input and output.  

Decision trees [10] are supervised machine learning 
technique which uses data feature to create decision rules. A tree 
consists of sequence of binary decisions which are created based 
on best single binary split. Best single binary split is determined 
by observing all splits and using the one with least error. 
Splitting can be stopped when there is single value feature in leaf 
node or can be controlled by user.  

Clustering [11] is an unsupervised machine learning 
technique which can be used to group similar data within some 
threshold value. These similar data might also share other 
similar characteristics. Once clustering is performed the cluster 
parameters are used to interpret the data to gain additional 
insights.  

III. PROPOSED MODEL 

A. Overview 

The proposed model illustrated in Figure 2 (A) consists of 
the wafer scale-clustering module, the Neural Network 
Recommender (NNR) module, and the Redundancy Analysis 
(RA) Simulator. The wafer scale-clustering module extracts 
features of the chips at the wafer level. The chip parameters are 
then augmented to the extracted features from the wafer scale-
clustering module. The input parameters of the NNR module 
comprise of these combined parameters. This module predicts 
whether the chip is repairable or not. If the chip is repairable, an 
RA Algorithm is recommended which is used by the RA 
Simulator to perform chip repair simulation. 

 

Fig. 2: Proposed and Existing Redundancy Analysis Model  

Figure 2 (B) describes the traditional setup where failed bit 
data of individual chips are used as an input for the RA 
algorithm. In a traditional setup all processes are at a chip level, 
represented by the black chip in the diagram. Whereas in the 
proposed method, data extraction and clustering are done at a 
wafer level, illustrated by the blue wafer at the top left corners 
of the modules. Rest of the modules work at a chip level. The 
algorithm used by the setup is pre-selected with the individual 
chip repair result as output. The proposed model has an added 
advantage of analyzing the failed bit data for the whole wafer. 
This model selects the best RA algorithm from a class of 
predetermined algorithms. 

B. Wafer Scale Chip Clustering 

Algorithm recommendation would require complete analysis 
and classification of chips but doing so individually would slow 
down the memory repair process. Hence, we introduce 
clustering which would allow classification of chips taking in 
very few parameters, with a low time overhead. Parameters like 
cluster size, position, and error count were used for classifying 
the chips. The following scoring formula is used for clustering 
based on distance and error: 

�� = �� × ��∑ ����	
 + �� × ��∑ ����	
    (1) 

The chip score Si determines which cluster the chip belongs 
to. Chips whose scores are closer to each other belong together 
in the same cluster. The error difference Ei is the difference 
between chip error and mean error of the cluster. The Euclidian 
distance Di is the distance of the chip from the cluster centroid. 
The error and the distance weights Ew and Dw are weights of 
error and distance factors.  



 

Fig. 3: An example of the clustering performed on a wafer 

A common case example illustrated in Figure 3 represents a 
part of the wafer. The objective of this example is to classify 
Chip_T. Let the distance between centers of adjacent chips be 
Cw (chip width) and Ch (chip height). We define sets Xj and Yj, 
which consist of x and y coordinates of all the chips in cluster j. 
The Euclidean cluster centers can be calculated as: 

���, ��� = �∑ �����
���� , ∑ �����

����  � (2) 

Using, the mean (X, Y) coordinates of the chips in clusters 
m and n, and using (2), the cluster centers for m and n are: 

����� = �3 × 0 + 3 × 1 + 2 × 2���8 = 7��8  

����� = �3 × 0 + 3 × 1 + 2 × 2��$8 = 7�$8  

���%� = �1 × 1 + 1 × 2 + 3 × 3 + 2 × 4���7 = 20��7  

���%� = �1 × 0 + 2 × 1 + 1 × 2 + 3 × 3��$7 = 13�$7  

 Thus, based on the Euclidian distance, Dm and Dn of clusters 
m and n from Chip_T, this chip should be grouped in Cluster n 
as Dm≅1.8·Dn. If the chips in Cluster n belong to an arc type-
specific error [12], if Chip_T error is not an arc error, this chip 
would be misclassified. This misclassification is used to 
calculate the weights in (1) to improve the clustering accuracy. 
The errors have to be considered as a factor when classifying the 
chip since mean error allows differentiation of chips in the 
specific error class from other chips. 

Since Error and Distance are different units, we added a 
normalizing factor of summation of errors and distance in (1). 
We also introduce distance and error weights for accurately 
classifying chips based on both distance and error. To obtain an 
accurate value of these weights we use misclassified chips, 
based on clusters derived from specific errors in [12]. The same 
example illustrated in Figure 3 is used to calculate error weights. 
Since Chip_T has to be classified in cluster m, score Sx(m) 
should be less than Sx(n) giving us the following equation: 

���%� − ����� > 0 

⇒ �+,-���� −  +,-��.�� × ��∑ ����	
 +  ��� −  �.� × ��∑ ����	
 > 0 

In the example, Dm ≅ 1.8·Dn. Generalizing this, let the 
correct cluster distance, Dm ≅ dDiff · Dn, where Dm and Dn are the 
distances from the correct and misclassified clusters 
respectively. Thus, Dn - Dm = (1 – dDiff) · Dn. Similarly, the 
average error difference between the clusters equals eDiff · 
Eaverage, where Eaverage= ∑Ei/n and Daverage= ∑Di/n. 

⇒  /0�11  ×  �2345264 × ��∑ ����	
 +  �1 − 70�11� × �� × ��∑ ����	
 > 0 

⇒  /0�11 × �2345264 × ��% × �2345264 >  �70�11 − 1� × �� × ��% × �2345264  

⇒  �� >  �70�11 − 1� ×  �� ×  ��  ��2345264 × /0�11�⁄  

The calculation for the above example is repeated for 
multiple misclassified chips, thereby obtaining a set of suitable 
values for Ew and Dw to be used in the scoring equation 
maximizing the correct classifications. The K cluster medians 
are initialized inside the wafer at equal distances from each other 
in a grid. We experimentally found this method of cluster center 
assignment to be better than random or error value based 
assignment. The centers are considered stable if the number of 
changes of chip cluster in the last iteration is within a user-
defined threshold.  

Since we use a modified K-means clustering algorithm, the 
quality of clusters and clustering algorithms needs to be 
assessed. Purity [13] is the evaluation criterion used for finding 
clustering accuracy: 

9:;�<= =  1> ? �+@��%���A
�	
  (3) 

Here N is the number of chips, k is the number of clusters, 
nj

i is the number of chips in cluster j with label i. The clustering 
algorithm provides size, position and mean error of the cluster 
as inputs to the neural network. 

C. Neural Network Recommender System 

1) Problem definition and setting 

Different RA algorithms are suitable for different chip 
configurations and error patterns. Let, A represent the class of 
RA algorithms under consideration. ai ϵ A denotes the ith 
algorithm. Given a DRAM chip with an unseen failure 
configuration, we have to select an algorithm from A which will 
repair the chip using a combination of algorithm runtime, spare 
rows, and columns allocated. 

2) Parameters 

We select the parameters based on the output of the 
clustering algorithm and the chip configuration such as the 
dimensions of the chip: number of rows, columns, number of 
spare rows and columns available and the number of faults in 
the chip. Based on the fault distribution, we then derive 
parameters by binning the number of faults in each row and 
column. We similarly bin repair coefficient values, calculated 
using the following equations: 
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where RCi is the repair coefficient for row i. Similarly, RCj 
is calculated for the repair coefficients of each column. 



3) Data generation 

We derived training data from [12] using parameters from 
experimental data and simulated the algorithms in A on 
~4.3×107 DRAM chips, which resulted in the following input 
parameters for the recommender system: 

S: Whether the algorithm was able to repair the chip 
T: Time taken to repair the chip 
Ru: Number of spare rows used by the algorithm  
Cu: Number of spare columns used by the algorithm 

If an algorithm does not repair the chip, it is assigned a score 
of -1, otherwise, the score is calculated using the simulation 
results coupled with hyperparameters. 

+�STUVW =  DX × Y −  Z × KO −  [ × �O, Gℎ�\ ;/\+�;/7−1,   Gℎ�\ %E< ;/\+�;/7   
+] = ^+�  | +�  ` a +%7 arg max� �+�STUVW�}         (4) 

where X, Z, [ are positive constants and ai ϵ A. 

4) Model 
We implemented the neural network model using PyTorch 

v1.0.1 [14]. The network consisted of eight hidden layers with 
64, 128, 256, 512, 256, 128, 64 and 32 units with ReLU 
activation and a softmax output layer. We use a model dropout 
of 0.2 for the hidden layers. Five output units, 4 for the 
algorithms under consideration (Broadside [2], LECA [8], OSP 
[4] and Genetic [8]) and 1 node for the unrepairable chip class 
were used. If a chip is predicted as unrepairable, we directly 
discard that chip, thereby saving valuable time, which can be 
utilized to repair other chips. Experiments with larger networks, 
with more than eight hidden layers and more units in each layer, 
did not show any substantial advantage in the results. The 
objective of the recommender is to select the best RA algorithm 
for a particular chip. 

D. Other Methods 

Decision tree will try to minimize entropy to get an optimum 
binary split. Since a decision tree is not very powerful on its 
own, random forest technique [10] is used. It uses ensemble 
learning i.e. it combines a number of decision trees to get a final 
decision. Random forest with 10 trees are used to develop an 
algorithm recommendation with entropy as criterion to measure 
the split quality.  

Clustering allows a wafer level classification of chips, which 
can’t be done through traditional chip level methods. To gauge 
the impact of clustering, we removed the features which 
contained specific details obtained from clustering. We ran the 
same neural network and fine-tuned the hyper parameters to get 
better results. A comparison of these methods has been done in 
the next section. 

IV. EXPERIMENTAL RESULTS 

A. Wafer Scale Clustering 

The result of chip simulation and clustering can be seen in 
Figure 4. Chip colors in Figure 4 (A) are based on relative error 
values based on simulated errors. In Figure 4 (B) the centroid 
errors of clusters are used to determine the range of chip colors. 
For clustering accuracy the following error labels were used:  

• Specific error: Line, Arc or Segment [12] 

• General error: High (>0.1% fault) and Low (≤0.1% fault) 

In the illustrated test wafer, 3261 out of 3496 chips were 
classified correctly. Using (3) we obtained a very high purity of 
0.933. Thus, the proposed mechanism allowed quick accurate 
clustering based on the 5 labels. Average silhouette scores of -
0.305 and 0.414 were obtained using the naive K-means and the 
proposed methodology respectively. Thus, the proposed scoring 
mechanism allows better cluster formations for the purposes of 
wafer level pattern detection then naive K-means.   

 

Fig. 4: (A) Chip Error in a cluster and (B) Mean Cluster Error 

B. Other Methodologies 

We have performed a comparison of the three methodologies 
discussed in sub-section III-D. The proposed method was 
compared with a decision tree based solution and a neural 
network recommender system without clustering. In Figure 5, 
we observe that the decision tree converged to a maximum 
accuracy of 69.38%. The recommender without clustering had a 
high training accuracy, but the test accuracy of the model was 
only 33.66%. Our proposed solution converged to a testing 
accuracy of 76.0%, surpassing all the other tried methods.  

 

Fig. 5: Comparison between proposed and other methods (III-D) 

C. Neural Network based Recommender System 

The yield of GA for the dataset was 98.99% and that of the 
recommender system was 91.12%. Nevertheless, in runtime 
comparison, the recommender system was 2.2x faster than the 
GA as illustrated in Figure 6. Time is of the essence while 
manufacturing wafers as more time on the manufacturing line, 
means higher chances of contamination. 

 

Fig. 6: Runtime comparison (seconds) between the Genetic Algorithm 
and the Recommender 
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The train-validation-test split was 80:10:10. The following 
hyperparameters were used in both the recommender with and 
without clustering: A batch size of 512 was selected to obtain a 
correct balance between the training time and accuracy. The 
model converged after 175 epochs. The gradient clipping and 
weight decay values were set to 0.2 and 0.00001 respectively. 
An Adam Optimizer was used due to low error rates. One cycle 
policy with maximum learning rate of 0.001 was used.  

 

Fig. 7: Accuracy and Loss plots with and without clustering 

We have illustrated the training iteration against accuracy 
and loss of the Neural Network with and without the clustering 
in Figure 7 (a), (b) and Figure 7 (c), (d) respectively. We 
observed after 200 epochs the model validation accuracy for the 
proposed recommender system converged to 75.92%. On the 
test set accuracy converged to 76.0%. The categorical cross-
entropy loss function reduced the loss from 1.6224 to 0.5967. 
When we ran the optimized recommender without clustering, 
training the neural network for 200 epochs, it only converged to 
a validation accuracy of 33.63%. On the test set it was only able 
to converge to an accuracy of 33.66%. From Figure 7 (c) and 
(d), we observe a huge difference in the validation and training 
set accuracy as well as the loss when clustering was not used. 

Table I, is the confusion matrix obtained for the 5 different 
categories by the proposed solution. We observe that the OSP 
algorithm has the lowest precision and recall as both OSP and 
Broadside are able to repair chips with a small number of errors. 
Thus, a large number of chips that can be repaired by the OSP 
are predicted as Broadside and vice-versa. Unsolvable chips are 
also predicted with a high precision as number of errors is a very 
strong indicator of a chip failure. For the Broadside, LECA and 
Genetic algorithm we observe a high rate of both precision and 
recall. 

TABLE I. CONFUSION MATRIX FOR THE PROPOSED MODEL  

 

We have illustrated the recommender system results in 
Figure 8 by dividing the chip error rate into 3 sections, low, 
medium and high for error rates of less than 0.6%, between 0.6% 
and 1.2% and greater than 1.2% respectively. The selections by 
the recommender system can be seen in the Pie Charts. 
Broadside was the most popular choice at low error rates 
followed by LECA and OSP, and GA was not recommended for 
this error rate range. GA was preferred at high error rates, 
followed by OSP and LECA. 

At low error rates, all the algorithms and the proposed model 
had 100% yield as the chips are easy to repair and often contain 
less number of row and column errors than the available spares. 
At medium error rates, the model outperformed existing 
heuristic algorithms in terms of yield by at least 9.1% and up to 
36.8%. Clustering was able to identify specific faults at high 
error rates which allowed the model to outperform Broadside, 
LECA and OSP algorithms in terms of yield by at least 32.9%. 
Even though GA has a slightly higher wafer yield, the proposed 
model is 2.2x faster than the GA as illustrated in Figure 6. 

With the help of the recommender system we were able to 
efficiently utilize the solving capabilities of different algorithms 
and repair a large number of chips with a similar average 
runtime as that of the heuristic algorithms.  

 

Fig. 8: Algorithm recommended by the proposed model and Heuristic 
algorithm vs recommender yield for different error ranges 

 

V. CONCLUSION 

In this paper, we have proposed a model for improving the 
wafer yield while decreasing the wafer repair runtime. This 
solution can be used in the manufacturing line directly to 
improve the wafer yield. The model accuracy can be improved 
as more wafer data is available when more wafers are 
manufactured. We can also add more algorithms to the model 
with the advancement of new RA algorithms in this field. With 
the increasing density of DRAM devices, where error 
probabilities are even higher, heuristic algorithms will consume 
more time to repair the faulty memory. The proposed model will 
save time on the manufacturing line, thus allowing production 
of more wafers. Upon deployment the proposed model would 
contribute to the field of memory repair and redundancy 
analysis. 
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