
978-1-6654-4175-9/21/$31.00 © 2021 IEEE

A Deep Learning Model for Redundancy Analysis
Algorithm Recommendation

Atishay Kumar1, Helik Kanti Thacker1, Ankit Gupta1, Keerthi Kiran Jagannathachar1, Deokgu Yoon2
DRAM Solutions1 , DRAM Product Engineering Team2

Samsung Semiconductor India Research and Development1 , Samsung Electronics2

{atishay.1, h.thacker, ankit.g2, keerthi.k, deokgu.yoon}@samsung.com

Abstract—Manufacturing errors, external impurities or faulty

deposition during chip fabrication could generate chips with faulty

memory cells, rendering the chip unusable. To repair these faulty

memory cells, redundancies are included in the memory in the

form of spare rows and columns. The process of mapping faulty

lines to redundant cells is Redundancy Analysis. Applying a

uniform Redundancy Analysis algorithm on the wafers or running

algorithms sequentially one after the other would either

compromise on the repair time or wafer yield. An end-to-end

solution for memory repair is proposed in this paper. A clustering

algorithm to classify, identify and extract features from chip

errors on a wafer is proposed. These features along with other

derived parameters are used as an input to the neural network

recommender system to select algorithms allowing an increase in

the wafer yield keeping a low repair time per wafer. We have

performed comparisons of the generated result with and without

clustering and with other methods of classification of chips for

Redundancy Analysis algorithm selection such as Decision Trees.

Experimental results demonstrate that this solution out-performs

the heuristic algorithmic solutions by 9.1% and 32.9% in terms of

yield for medium and high error rates.

Keywords— Deep Learning, Clustering, Memory Repair,

DRAM, Redundancy Analysis

I. INTRODUCTION

Manufacturers have been able to keep up with the increasing
semiconductor demands by producing chips in large quantities
with higher densities on a single wafer. The increase in wafer
density coupled with the decrease in node sizes have led to an
increased probability of chip defects, which reduces the wafer
yield. Beginning with 64Kbit DRAM chips, manufacturers have
included redundancies (spare rows and columns) in the chips to
repair them which improves the overall wafer yield. Using wafer
tests during the Electrical Die sorting process (EDS), the defect
addresses on each chip can be located. We use these addresses
to perform Redundancy Analysis (RA), which is a process of
allocating spare rows and columns to the defective addresses
detected in the chip, as illustrated in Figure 1 where row 2 and
columns 4 and 6 are repaired using the spares available.

Fig. 1: Memory repair using redundant rows and columns

RA is an NP-complete problem [1], so with an increasing
number of chip errors, the time required to repair the chip with
maximum possible yield increases exponentially. RA allows the
repair of defective chips, but if the chip is unrepairable due to a
large number of errors, it would be discarded. Different RA
Algorithms like Broadside [2], LECA [3] and OSP [4] - having
different wafer yield and time complexities - have been
proposed, but the current methodology of using a single
algorithm for all chips on the production line is not sufficient for
maximum yield or minimum repair time.

Since chips with similar failures are more likely to be
repaired by similar algorithms, we propose a wafer-scale
clustering module for classifying the chips on the basis of errors
and wafer position, and a neural network based RA algorithm
recommender module which would allow RA algorithm
selection. To the best of the authors’ knowledge, the proposed
methodology to identify chips with similar failures in the
Backend of the Line (BEOL) and improve the repair efficiency
is the first of its kind. The longer the wafer is kept in the BEOL,
more are the chances of its contamination. Thus decreasing the
production time will allow manufacturing of more wafers and
decreasing the probability of contamination.

The summary of our contributions is as follows.
• A wafer-scale clustering module for classifying the chips on

the basis of position on the wafer and number of errors. This
would allow classification of chips exhibiting specific faults
into a single cluster.

• A neural network based Redundancy Analysis recommender
module which would allow selection of an algorithm out of
a suite of algorithms to analyze and improve the repair
efficiency while decreasing the overall time taken to repair
this memory.

Different solutions can be provided in different conditions,
given the solution exists. Quality of solution and time taken by
each RA algorithm also depends on type of chip failure patterns.
The proposed model takes these factors into account along with
chip errors and provide the best algorithm recommendation. It
also predicts if the chip should be discarded thus saving valuable
time on the manufacturing line which can be utilized to repair
other chips.

The outline of the paper is as follows. In Section 2, we have
discussed the existing RA algorithms along with the genetic
algorithm. Section 3 describes the proposed model in detail.
Finally, we have discussed the experimental results and
conclusion in Sections 4 and 5 respectively.

II. RELATED WORK

A. Existing RA Algorithms

There have been various contributions in the field of RA
algorithms. These algorithms can be classified into two
categories, exponential and heuristic algorithms. Exponential
algorithms will repair all the repairable chips, but in general,
are too slow to be used on the production lines. Heuristic
algorithms, on the other hand, trade-off yield with a faster
execution time. Exponential algorithms include Fault-driven
[5] which builds a tree with all the possible repairs. Branch-and-
Bound [1] , PAGEB [1] and Faulty Line Covering algorithm [3]
optimize the naive exponential algorithm, bringing down the
overall time required to repair the chip without sacrificing the
yield. FAST [6] groups the faults to further bring down the time
complexity but it starts to sacrifice the yield.

Repair-Most [2] and Broadside Algorithm [2] try to repair
the chip greedily. LECA [3] uses Effective Coefficients to rank
the rows and columns of a chip in the order in which they have
to be repaired. The One Side Pivot (OSP) [4] uses Pivot fault
properties to find repair priorities reducing the analysis time
even when the error rate is high. RA algorithm for chip repair
must be chosen carefully as they provide varying yield and time
complexity. Genetic Algorithm (GA) [7] is an evolutionary
algorithm used to solve optimization problems. In [8], GA has
been proposed as a possible solution to RA.

An ideal RA should find a repair solution whenever one
exists. It should complete execution in a reasonable length of
time and abort at the earliest sign of un-reparability.

B. Learning Algorithms

Neural Networks (NN) [9] are a set of learning algorithms
which are capable of processing dynamic state of external
inputs. Neural networks learn or train by using input data
features to extract meaning, relations and patterns. Typically NN
are arranged in layers and each layer passes extracted
information to the next layer for further computation. The
processing is done using weighted connections and based on
learning rule these weights are modified. NN follows universal
approximation theorem i.e. it can approximate arbitrarily well
for any complex relation between input and output.

Decision trees [10] are supervised machine learning
technique which uses data feature to create decision rules. A tree
consists of sequence of binary decisions which are created based
on best single binary split. Best single binary split is determined
by observing all splits and using the one with least error.
Splitting can be stopped when there is single value feature in leaf
node or can be controlled by user.

Clustering [11] is an unsupervised machine learning
technique which can be used to group similar data within some
threshold value. These similar data might also share other
similar characteristics. Once clustering is performed the cluster
parameters are used to interpret the data to gain additional
insights.

III. PROPOSED MODEL

A. Overview

The proposed model illustrated in Figure 2 (A) consists of
the wafer scale-clustering module, the Neural Network
Recommender (NNR) module, and the Redundancy Analysis
(RA) Simulator. The wafer scale-clustering module extracts
features of the chips at the wafer level. The chip parameters are
then augmented to the extracted features from the wafer scale-
clustering module. The input parameters of the NNR module
comprise of these combined parameters. This module predicts
whether the chip is repairable or not. If the chip is repairable, an
RA Algorithm is recommended which is used by the RA
Simulator to perform chip repair simulation.

Fig. 2: Proposed and Existing Redundancy Analysis Model

Figure 2 (B) describes the traditional setup where failed bit
data of individual chips are used as an input for the RA
algorithm. In a traditional setup all processes are at a chip level,
represented by the black chip in the diagram. Whereas in the
proposed method, data extraction and clustering are done at a
wafer level, illustrated by the blue wafer at the top left corners
of the modules. Rest of the modules work at a chip level. The
algorithm used by the setup is pre-selected with the individual
chip repair result as output. The proposed model has an added
advantage of analyzing the failed bit data for the whole wafer.
This model selects the best RA algorithm from a class of
predetermined algorithms.

B. Wafer Scale Chip Clustering

Algorithm recommendation would require complete analysis
and classification of chips but doing so individually would slow
down the memory repair process. Hence, we introduce
clustering which would allow classification of chips taking in
very few parameters, with a low time overhead. Parameters like
cluster size, position, and error count were used for classifying
the chips. The following scoring formula is used for clustering
based on distance and error:

�� = �� × ��∑ ����	
 + �� × ��∑ ����	
 (1)

The chip score Si determines which cluster the chip belongs
to. Chips whose scores are closer to each other belong together
in the same cluster. The error difference Ei is the difference
between chip error and mean error of the cluster. The Euclidian
distance Di is the distance of the chip from the cluster centroid.
The error and the distance weights Ew and Dw are weights of
error and distance factors.

Fig. 3: An example of the clustering performed on a wafer

A common case example illustrated in Figure 3 represents a
part of the wafer. The objective of this example is to classify
Chip_T. Let the distance between centers of adjacent chips be
Cw (chip width) and Ch (chip height). We define sets Xj and Yj,
which consist of x and y coordinates of all the chips in cluster j.
The Euclidean cluster centers can be calculated as:

���, ��� = �∑ �����
���� , ∑ �����

���� � (2)

Using, the mean (X, Y) coordinates of the chips in clusters
m and n, and using (2), the cluster centers for m and n are:

����� = �3 × 0 + 3 × 1 + 2 × 2���8 = 7��8

����� = �3 × 0 + 3 × 1 + 2 × 2��$8 = 7�$8

���%� = �1 × 1 + 1 × 2 + 3 × 3 + 2 × 4���7 = 20��7

���%� = �1 × 0 + 2 × 1 + 1 × 2 + 3 × 3��$7 = 13�$7

 Thus, based on the Euclidian distance, Dm and Dn of clusters
m and n from Chip_T, this chip should be grouped in Cluster n
as Dm≅1.8·Dn. If the chips in Cluster n belong to an arc type-
specific error [12], if Chip_T error is not an arc error, this chip
would be misclassified. This misclassification is used to
calculate the weights in (1) to improve the clustering accuracy.
The errors have to be considered as a factor when classifying the
chip since mean error allows differentiation of chips in the
specific error class from other chips.

Since Error and Distance are different units, we added a
normalizing factor of summation of errors and distance in (1).
We also introduce distance and error weights for accurately
classifying chips based on both distance and error. To obtain an
accurate value of these weights we use misclassified chips,
based on clusters derived from specific errors in [12]. The same
example illustrated in Figure 3 is used to calculate error weights.
Since Chip_T has to be classified in cluster m, score Sx(m)
should be less than Sx(n) giving us the following equation:

���%� − ����� > 0

⇒ �+,-���� − +,-��.�� × ��∑ ����	
 + ��� − �.� × ��∑ ����	
 > 0

In the example, Dm ≅ 1.8·Dn. Generalizing this, let the
correct cluster distance, Dm ≅ dDiff · Dn, where Dm and Dn are the
distances from the correct and misclassified clusters
respectively. Thus, Dn - Dm = (1 – dDiff) · Dn. Similarly, the
average error difference between the clusters equals eDiff ·
Eaverage, where Eaverage= ∑Ei/n and Daverage= ∑Di/n.

⇒ /0�11 × �2345264 × ��∑ ����	
 + �1 − 70�11� × �� × ��∑ ����	
 > 0

⇒ /0�11 × �2345264 × ��% × �2345264 > �70�11 − 1� × �� × ��% × �2345264

⇒ �� > �70�11 − 1� × �� × �� ��2345264 × /0�11�⁄

The calculation for the above example is repeated for
multiple misclassified chips, thereby obtaining a set of suitable
values for Ew and Dw to be used in the scoring equation
maximizing the correct classifications. The K cluster medians
are initialized inside the wafer at equal distances from each other
in a grid. We experimentally found this method of cluster center
assignment to be better than random or error value based
assignment. The centers are considered stable if the number of
changes of chip cluster in the last iteration is within a user-
defined threshold.

Since we use a modified K-means clustering algorithm, the
quality of clusters and clustering algorithms needs to be
assessed. Purity [13] is the evaluation criterion used for finding
clustering accuracy:

9:;�<= = 1> ? �+@��%���A
�	
 (3)

Here N is the number of chips, k is the number of clusters,
nj

i is the number of chips in cluster j with label i. The clustering
algorithm provides size, position and mean error of the cluster
as inputs to the neural network.

C. Neural Network Recommender System

1) Problem definition and setting

Different RA algorithms are suitable for different chip
configurations and error patterns. Let, A represent the class of
RA algorithms under consideration. ai ϵ A denotes the ith
algorithm. Given a DRAM chip with an unseen failure
configuration, we have to select an algorithm from A which will
repair the chip using a combination of algorithm runtime, spare
rows, and columns allocated.

2) Parameters

We select the parameters based on the output of the
clustering algorithm and the chip configuration such as the
dimensions of the chip: number of rows, columns, number of
spare rows and columns available and the number of faults in
the chip. Based on the fault distribution, we then derive
parameters by binning the number of faults in each row and
column. We similarly bin repair coefficient values, calculated
using the following equations:

B��, C� = D1, �B ;EF �, GEH:�% C �I B+:H<=0, E<ℎ/;F�I/

K�� = ? B��, C�
LMNO.�P

�	

 − ? QB��, C� × ? B��, C�

5M�P

�	

R

LMNO.�P

�	

where RCi is the repair coefficient for row i. Similarly, RCj
is calculated for the repair coefficients of each column.

3) Data generation

We derived training data from [12] using parameters from
experimental data and simulated the algorithms in A on
~4.3×107 DRAM chips, which resulted in the following input
parameters for the recommender system:

S: Whether the algorithm was able to repair the chip
T: Time taken to repair the chip
Ru: Number of spare rows used by the algorithm
Cu: Number of spare columns used by the algorithm

If an algorithm does not repair the chip, it is assigned a score
of -1, otherwise, the score is calculated using the simulation
results coupled with hyperparameters.

+�STUVW = DX × Y − Z × KO − [× �O, Gℎ�\ ;/\+�;/7−1, Gℎ�\ %E< ;/\+�;/7
+] = ^+� | +� ` a +%7 arg max� �+�STUVW�} (4)

where X, Z, [are positive constants and ai ϵ A.

4) Model
We implemented the neural network model using PyTorch

v1.0.1 [14]. The network consisted of eight hidden layers with
64, 128, 256, 512, 256, 128, 64 and 32 units with ReLU
activation and a softmax output layer. We use a model dropout
of 0.2 for the hidden layers. Five output units, 4 for the
algorithms under consideration (Broadside [2], LECA [8], OSP
[4] and Genetic [8]) and 1 node for the unrepairable chip class
were used. If a chip is predicted as unrepairable, we directly
discard that chip, thereby saving valuable time, which can be
utilized to repair other chips. Experiments with larger networks,
with more than eight hidden layers and more units in each layer,
did not show any substantial advantage in the results. The
objective of the recommender is to select the best RA algorithm
for a particular chip.

D. Other Methods

Decision tree will try to minimize entropy to get an optimum
binary split. Since a decision tree is not very powerful on its
own, random forest technique [10] is used. It uses ensemble
learning i.e. it combines a number of decision trees to get a final
decision. Random forest with 10 trees are used to develop an
algorithm recommendation with entropy as criterion to measure
the split quality.

Clustering allows a wafer level classification of chips, which
can’t be done through traditional chip level methods. To gauge
the impact of clustering, we removed the features which
contained specific details obtained from clustering. We ran the
same neural network and fine-tuned the hyper parameters to get
better results. A comparison of these methods has been done in
the next section.

IV. EXPERIMENTAL RESULTS

A. Wafer Scale Clustering

The result of chip simulation and clustering can be seen in
Figure 4. Chip colors in Figure 4 (A) are based on relative error
values based on simulated errors. In Figure 4 (B) the centroid
errors of clusters are used to determine the range of chip colors.
For clustering accuracy the following error labels were used:

• Specific error: Line, Arc or Segment [12]

• General error: High (>0.1% fault) and Low (≤0.1% fault)

In the illustrated test wafer, 3261 out of 3496 chips were
classified correctly. Using (3) we obtained a very high purity of
0.933. Thus, the proposed mechanism allowed quick accurate
clustering based on the 5 labels. Average silhouette scores of -
0.305 and 0.414 were obtained using the naive K-means and the
proposed methodology respectively. Thus, the proposed scoring
mechanism allows better cluster formations for the purposes of
wafer level pattern detection then naive K-means.

Fig. 4: (A) Chip Error in a cluster and (B) Mean Cluster Error

B. Other Methodologies

We have performed a comparison of the three methodologies
discussed in sub-section III-D. The proposed method was
compared with a decision tree based solution and a neural
network recommender system without clustering. In Figure 5,
we observe that the decision tree converged to a maximum
accuracy of 69.38%. The recommender without clustering had a
high training accuracy, but the test accuracy of the model was
only 33.66%. Our proposed solution converged to a testing
accuracy of 76.0%, surpassing all the other tried methods.

Fig. 5: Comparison between proposed and other methods (III-D)

C. Neural Network based Recommender System

The yield of GA for the dataset was 98.99% and that of the
recommender system was 91.12%. Nevertheless, in runtime
comparison, the recommender system was 2.2x faster than the
GA as illustrated in Figure 6. Time is of the essence while
manufacturing wafers as more time on the manufacturing line,
means higher chances of contamination.

Fig. 6: Runtime comparison (seconds) between the Genetic Algorithm
and the Recommender

69.38

33.66

76

0

20

40

60

80

Decision Tree Recommender

without Clustering

Recommender with

Clustering

A
cc

u
ra

cy

184.90

407.52

0.00 100.00 200.00 300.00 400.00 500.00

Recommender

Genetic

Time in Seconds

The train-validation-test split was 80:10:10. The following
hyperparameters were used in both the recommender with and
without clustering: A batch size of 512 was selected to obtain a
correct balance between the training time and accuracy. The
model converged after 175 epochs. The gradient clipping and
weight decay values were set to 0.2 and 0.00001 respectively.
An Adam Optimizer was used due to low error rates. One cycle
policy with maximum learning rate of 0.001 was used.

Fig. 7: Accuracy and Loss plots with and without clustering

We have illustrated the training iteration against accuracy
and loss of the Neural Network with and without the clustering
in Figure 7 (a), (b) and Figure 7 (c), (d) respectively. We
observed after 200 epochs the model validation accuracy for the
proposed recommender system converged to 75.92%. On the
test set accuracy converged to 76.0%. The categorical cross-
entropy loss function reduced the loss from 1.6224 to 0.5967.
When we ran the optimized recommender without clustering,
training the neural network for 200 epochs, it only converged to
a validation accuracy of 33.63%. On the test set it was only able
to converge to an accuracy of 33.66%. From Figure 7 (c) and
(d), we observe a huge difference in the validation and training
set accuracy as well as the loss when clustering was not used.

Table I, is the confusion matrix obtained for the 5 different
categories by the proposed solution. We observe that the OSP
algorithm has the lowest precision and recall as both OSP and
Broadside are able to repair chips with a small number of errors.
Thus, a large number of chips that can be repaired by the OSP
are predicted as Broadside and vice-versa. Unsolvable chips are
also predicted with a high precision as number of errors is a very
strong indicator of a chip failure. For the Broadside, LECA and
Genetic algorithm we observe a high rate of both precision and
recall.

TABLE I. CONFUSION MATRIX FOR THE PROPOSED MODEL

We have illustrated the recommender system results in
Figure 8 by dividing the chip error rate into 3 sections, low,
medium and high for error rates of less than 0.6%, between 0.6%
and 1.2% and greater than 1.2% respectively. The selections by
the recommender system can be seen in the Pie Charts.
Broadside was the most popular choice at low error rates
followed by LECA and OSP, and GA was not recommended for
this error rate range. GA was preferred at high error rates,
followed by OSP and LECA.

At low error rates, all the algorithms and the proposed model
had 100% yield as the chips are easy to repair and often contain
less number of row and column errors than the available spares.
At medium error rates, the model outperformed existing
heuristic algorithms in terms of yield by at least 9.1% and up to
36.8%. Clustering was able to identify specific faults at high
error rates which allowed the model to outperform Broadside,
LECA and OSP algorithms in terms of yield by at least 32.9%.
Even though GA has a slightly higher wafer yield, the proposed
model is 2.2x faster than the GA as illustrated in Figure 6.

With the help of the recommender system we were able to
efficiently utilize the solving capabilities of different algorithms
and repair a large number of chips with a similar average
runtime as that of the heuristic algorithms.

Fig. 8: Algorithm recommended by the proposed model and Heuristic
algorithm vs recommender yield for different error ranges

V. CONCLUSION

In this paper, we have proposed a model for improving the
wafer yield while decreasing the wafer repair runtime. This
solution can be used in the manufacturing line directly to
improve the wafer yield. The model accuracy can be improved
as more wafer data is available when more wafers are
manufactured. We can also add more algorithms to the model
with the advancement of new RA algorithms in this field. With
the increasing density of DRAM devices, where error
probabilities are even higher, heuristic algorithms will consume
more time to repair the faulty memory. The proposed model will
save time on the manufacturing line, thus allowing production
of more wafers. Upon deployment the proposed model would
contribute to the field of memory repair and redundancy
analysis.

REFERENCES

[1] S. K. Cho, K. Wooheon, C. Hyungjun, L. Changwook and K. Sungho, A
Survey of Repair Analysis Algorithms for Memories, ACM Computer
Survey, 2016.

[2] M. Tarr, D. Boudreau and R. Murphy, "Defect analysis system speeds
test and repair of redundant memories," Electronics, vol. 29, no. 12, pp.
175-179, Jan. 1984.

[3] F. Lombardi and W. K. Huang, "Approaches for the repair of VLSI/WSI
RRAMs by row/column deletion," International Symposium on Fault-

Tolerant Computing., pp. 342-347, 1988.

[4] J. Kim, K. Cho, W. Lee and S. Kang, "A new redundancy analysis
algorithm using one side pivot," International SoC Design Conference

(ISOCC), pp. 134-135, Jeju, 2014.

[5] J. R. Day, "A fault-driven comprehensive redundancy algorithm," IEEE

Des. Test Comput., vol. 2, no. 3, p. 35–44, Jun. 1985.

[6] C. Hyungjun, W. Kang and S. Kang, "A fast redundancy analysis
algorithm in ATE for repairing faulty memories," ETRI J., vol. 34, no. 3,
pp. 478-481, June 2012.

[7] K.-F. Man, K.-S. W. Tang and T. W. S. Kwong, "Genetic algorithms:
concepts and applications [in engineering design]," IEEE Transactions

on Indus-trial Electronics, vol. 43, no. 5, pp. 519-534, Oct. 1996.

[8] J. Milbourn, "Strategies for Optimising DRAM Repair," Durham theses,
Durham University, 2010.

[9] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521,
p. 436–444, 2015.

[10] L. Breiman, "Random Forests," Machine Learning, vol. 45, p. 5–32,
2001.

[11] J. B. MacQueen, "Some methods for classification and analysis of
multivariate observations," Proceedings of the fifth Berkeley symposium

on mathematical statistics and probability, vol. 1, p. 281–297, 1967.

[12] Atishay, A. Gupta, R. Sonawat, H. K. Thacker and B. Prasanth, "SEARS:
A Statistical Error and Redundancy Analysis Simulator," 27th

International Conference on VLSI-SoC, pp. 117-122, 2019.

[13] J. Wu, H. Xiong, J. Chen and W. Zhou, "A Generalization of Proximity
Functions for K-Means," Seventh IEEE International Conference on

Data Mining, pp. 361-370, 2007.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan and et
al., "PyTorch: An Imperative Style, High-Performance Deep Learning
Library.," Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., p. 8024–35, 2019.

